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STRONG LAWS OF LARGE NUMBERS
FOR ASYMPTOTICALLY QUADRANT
INDEPENDENT RANDOM FIELDS

Mi-Hwa Ko, TAE-SUNG KiM, AND HYuN-CHULL KM

ABSTRACT. In this paper we define the notion of asymptotically
quadrant independent random field and derive the strong laws of
large numbers for this random field.

1. Introduction

Let d be a positive integer, R? the d-dimensional Euclidean space
equipped with the coordinate-wise partial order < and Zi C R? the d-

dimensional lattice. The notation m < n, where m = (m1, ma, - ,mq)
and n = (n1,n2, -+ ,n4), thus means that my < ng, for k =1,2,--- ,d.
We also use |n| for n1 X ng X -+ x ng, n — 00 is to be interpreted as
ng — oo, for k=1,2,--- ,d and || n || for max |ng|.

1<k<n

Let {X;:] € Z2} be a field of d-dimensional random variables on
some probability space (€2, K, P) with EX; = 0. The field {X;: j € z4}
fulfills the strong law of large number if as n — o0,

|n| ™t Z X; —0a.s,
1G<n

where n = (n1,n9, -+ ,n4) and |n| =n; X ng X -+ X ng.

The purpose of the paper is to establish the strong laws of large
numbers for the fields of d-dimensional random variables which are not
necessarily independent. Evidently, we have to impose certain restric-
tions on the fields, that means we require the weak dependence. A field
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X, : 7€ Z%} is said to be pairwise positive quadrant dependent (PQD
i-d +
if for every 1 and j, and for every real s,?,

(l.la) P{Xi>8,X1>t}—P{X£’>S}P{Xl‘>t}ZO
or, as an equivalent condition,
(1.1b) P{X; < s X; <t} - P{X; <s}P{X; <t} >0,

This concept was introduced by Lehmann [4]. In the following we will
drop the assumption of positive dependence, but use the magnitude of
the left hand sides in (1.1a) and (1.1b) as a measure of dependence.
For this reason we introduce the notion of asymptotic quadrant inde-
pendence : A field {X; :j € Z4} is said to be pairwise asymptotically
quadrant independent (AQI), if there exists a sequence {g(|| n ||) : n €
24} with q(| » |[) — 0 as n — oo , such that for real s,tand i # j,

there holds
|P{X2 > S,Xl' > t} — P{Xz > S}P{Xl > t}l

(1.2a) <q(llj—il)-ay (s,1),

IP{Xi < S,XJ_' < t} — P{Xi < S}P{Xl < t}|
<q(lg—ill)- By (s,1),

where a;; (s,t) and 3;; (s,t) are nonnegative numbers which may de-
pend on i, J»s,t. Since the left hand sides in (1.2a) and (1.2b) converge
to zero as |s| — oo and [t| — o0, it seems natural to impose additional
restrictions on o;; and G;; .

In the case of d = 1 Birkel [2] introduced the concept of AQI and
obtained the strong law of large numbers for AQI random variables. In
this paper we extend the results obtained by Birkel [2] to the case of
d>2.

In Section 2 we consider some preliminary results which will be im-
portant role to prove the strong law of large numbers and we will derive
conditions on pairwise AQI field {X; : j € 24} which quarantees that

(1.2b)

the finiteness of Z |n|"q(|| n ||) implies the strong law of large num-
nezd
ber in Section 3.
In the following statement, C stands for a constant whose value may
vary from line to line.
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2. Preliminaries

The following theorems will be important roles to prove the strong
laws of large for AQI field.

THEOREM 2.1. Let {X; : j € Z4} be a field of nonnegative random
variables with EX; < oo such that

(1) sup EX; < oo,
ezt

@ > Y Covt (X, X;)/1if < oo

J21 |j1=lif>1
Then, as n — 0o,

(2.1) In| ™ Z (Xj—EXj) —0a.s.

1<j<n

PrOOF. It is enough to prove it for the 2-dimensional case. Let
a > 1,b > 1 and ng = ([a®],[b*]) for k = (k1,k2). By Chebyshev’s
inequality for every € > 0

> P{|Sng — ESn,| > elnyl}
E>1

<C ZVar(SnE) / lnl?

k>1

cY S5 couXi, X)) [ Il

k>1 1<j<n; 1<i<ng

<oy S Covt(Xy X;)/Ingl?

(2.2) k>1 1<j<n, 1<i<ng

I
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The last inequality of (2.2) follows from the following : First note that
1 1
(23) 2 gl 2 ||
{kng>;} & k>ko ' =
where kg = min{k : ny > j}. Then the right-hand side of (2.3) yields

1
2 S O gmpm
2 - 2k1 b2k
k2@|nk| i O 1p2k2

1
= C> D —mpn

ko zkg k1 2]96

D
22k p2ky
D E
Ing 2~ 142

where kg = (kg, ky) and C, D and E are some positive constants. Thus
by the Borel-Cantelli lemma it follows from (2.2) that

(2.4) (Sny — BSr,) / Inel = 0 a. s.

Now given k = (k1,k2), positive integers ki, kp for ng < n < ngyy we
have

S

Mgyl E S”&-i-l

k41l

Sp— ESy
i

|n&+l| ES’"’&-FL - ESnk

(25) | A

by the monotonicity of S,. Let @ > 1,b > 1 and for each ny = (ng,, ng,)
set ng, = [a*1], ng, = [b*2]. Then from (i), (2.4) and (2.5) one can easily
verify that

lim sup (|Sp — ESy| / |n|) < sup EXj(ab—1),
n>1 - - i>1 =

for every a > 1 and b > 1 which concludes the proof since both a and b
may arbitrary close to 1. O

THEOREM 2.2. Let {X; : j € Z4} be a field of nonnegative d-
dimensional random variable such that
(¢) sup EX; < oo,
jezd
(i) Y P(X; > |j]) < oo, |nl™) EX;lix,5|y — 0 asn — oo,

Jj=1 1<j<n
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(@) Y D 14177 Covt(Xilgxgian Xilix<iyny) < oo
J21 |j|=li=1
Then, as n — o0,
In|™ > (X; - EX;) —0a.s..
1<j<n

PrOOF. For j € Z% let ¥; = X1 x ;- Clearly, the random field
{Y; : j € Z4} satisfies the assumptions of Theorem 2.1. Hence as
n — 00,
(2.6) o™t Y (Y; - EY;) —0a.s.

1<j<n

Assumption (i3) of Theorem 2.2 takes care of the difference between
Y Yjand ) Xj,and » EYjand ) EX;,whichissufficient

1<j<n 1<j<n 1<j<n 1<j<n

to get the desired result. O

LEeMMA 2.3. (Newman [5]) Let X1,X2 be random variables with
EX? < oo for j =1,2. Then

Cov(Xy, X3)
= / / (P{X1>5,X2 >t} — P{X1 > s}P{Xs > t}) dsdt.

LEMMA 2.4. (Birkel [2]) Let X be a random variable with EX? < co.
Then

3. Main results

In this section we extend some results in Birkel [2] to the d-dimen-
sional case.

THEOREM 3.1. Let {X; : j € Z%} be an AQI field of uniformly
bounded random variables with EX j= 0 such that

aij (8,t) < Ca < 00,
/Bi’l (S,t) < Cﬁ < 00.
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If{g( n|)) : n > 1} satisfies Y |n|""q(|| n ||) < oo, then {X; : j € Z4}
n>l
fulfills the strong law of large numbers.

ProOF. Let M < oo be such that |X;| < M for J€ Zi. We will
verify that -

(3.1) |n| =1 (X -EXf)—0as
1<j<n

and

(3.2) |n| ™t (Xl— - EXl“) — 0 a. s..
1<j<n

As sup EX ¥ < M < oo, by using Theorem 2.1 it suffices to prove
Jjez4 =

(3.3) > > il Covt (X X)) < oo

izl |j|2151>]1]

Applying Lemma 2.3 and the pairwise AQI property (1.2a), we obtain
for ¢ # j,

Cov* (X}, X;)

IA

M M
| /0 /0 (PX} > 8, X} >t} — P{X} > syP{X} > t})dsd]

IA

M M
/ / PAXF > 5, X} > 1) — P{X{ > s}P{X] > t}]dsdt

Ilj—z“/ / g5 (5, D) dsdt

Co - Mq(| j—1).

IN

IA
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Hence

J21 1< <4l
< Ca 3I72MPq(H G — i )+ D 15172 Var(X})
J21 1<[4|<|4] Jj>1
< CaM?D q(lnl) D ULINZ+MD |5
[n|>1 U>]ml+1 jzl
< oMY ol ()l )) + CoM? < oo,
|nj>1

This proves (3.3). Thus, by Theorem 2.1 we have as n — oo,
o™ > |IX; - EXf| —0a.s.
1<j<n B
Using that for s,¢ > 0,
P{X; > s, X7 >t} — P{X] > s}P{X; >t}
=P{X; <—s,X; <—t} - P{X] <-s}P{X; < -t}

and applying the pairwise AQI property (1.2b), (3.2) is verified in the
same way. Since XJ'-‘r - X =X, EXJT‘~ — EXj“ = 0, this gives us the
desired result. - - - - O

If the random variables are not uniformly bounded, o; ; and f;; have
to satisfy additional assumptions.

THEOREM 3.2. Let {X; :j € Z4} be a field of AQI d-dimensional
random variables with EX_ =0 such that

sup/ / (s, t) dsdt < oo, sup/ / Bij(—s,—t) dsdt < oo.
ity i#]

Assume
(1)  sup E|Xj| < oo,
jezd
(@) EX]<oo, Y |jI? Var(X;) < cc.

j>1

IF{q(l n|) : n > 1} satisfies Z In|"t q(]| ||) < oo then {X;:j5¢ z4}
In|21
fulfills the strong law of large numbers.
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Proor. We proceed as in the proof of Theorem 3.1. Using the
integrability of o ;, we get for i # j

Cov+(Xi+,X2') < q(llj—-1 H)/ / 0,j(s,t) dsdt

< a Q(“]_l”

and hence,

> Y 317% Cov* (X[, X})

321 |j12lE> (1]

< Ol Talln )+ Y1517 Var(X;) < oo,

|n|>1 J21

by Lemma 2.4 and assumption (i#4). Now the proof of Theorem 3.2
follows along the lines of the proof of Theorem 3.1. 1

REMARK. The strong law of large numbers, resulting from Theorem
3.2, shows the possibility that Theorem 1 of Birkel [1] and Etemadi’s
strong law of large numbers ([3], Corollary 1) can be extended to the
case of d > 2.
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