A NUMBER SYSTEM IN \mathbb{R}^n

EUI-CHAI JEONG

ABSTRACT. In this paper, we establish a number system in \mathbb{R}^n which arises from a Haar wavelet basis in connection with decompositions of certain Cuntz algebra representations on $L^2(\mathbb{R}^n)$. Number systems in \mathbb{R}^n are also of independent interest [9]. We study radix-representations of $x \in \mathbb{R}^n$:

$$x := a_1 a_{i-1} \cdots a_1 a_0 \cdot a_{-1} a_{-2} \cdots$$

as

$$x = M^i a_i + \cdots + M a_1 + a_0 + M^{-1} a_{-1} + M^{-2} a_{-2} + \cdots$$

where each $a_k \in D$, and D is some specified digit set. Our analysis uses iteration techniques of a number-theoretic flavor. The viewpoint is a dual one which we term “fractals in the large vs. fractals in the small,” illustrating the number theory of integral lattice points vs. “fractions”.

1. Introduction

D. E. Knuth [12] had raised the question of describing, for a given positive integer M which will be called the radix, or base, those finite sets D of real numbers with the property that every real number r can be represented in the form

$$(1.1) \quad r = \pm \sum_{i=-N(r)}^{\infty} a_i M^{-i}, \quad a_i = d_i(r) \in D.$$

If every real number has a representation then the set D will be called feasible for radix M. The most common representation is the one we are using with $M = 10$ and the set $D = \{0, 1, 2, \ldots, 8, 9\}$. If we defined the set $T = \{ r \mid r = \sum_{i=1}^{\infty} a_i 10^{-i}, a_i \in \{0, 1, 2, \ldots, 8, 9\} \}$, then the set T is the closed interval $[0,1]$. On the other hand, this kind of radix

Received March 9, 2002.
2000 Mathematics Subject Classification: Primary 11A63; Secondary 46L45.
Key words and phrases: C^*-algebra, radix-representation, representation of c^*-algebra, wavelet basis, fractal.
representation in $\mathbb{R}^n, n \geq 2$, is not much known yet, but the set \mathbf{T} is well known as a fractal tile, see Figure 2 in this paper. Fractal tiles are used for wavelet base in digital theory. We study the simplest number system in $\mathbb{R}^n, n \geq 2$ which is similar to the number system in \mathbb{R} which we are using. In section 2, we construct a radix-representation in \mathbb{Z}^n using fractals in large. In section 3, we use a fractal tile in the small to extend a radix-representation of \mathbb{Z}^n to \mathbb{R}^n. In section 4, we show an example of radix-representation of \mathbb{R}^2, and as an application of the radix-representation \mathbb{Z}^n, we introduce decomposition of representations of certain C^*-algebras, so called Cuntz algebra. We give some remarks about uniqueness of the radix-representations of x in \mathbb{R}^n.

2. A radix-representation in \mathbb{Z}^n

We start with elementary facts. If M is a fixed positive integer with $1 < M$, then for any given positive integer x, there exists a nonnegative integer l and a set of $l+1$ integers a_0, a_1, \ldots, a_l such that x may be represented uniquely in the following form:

\[(2.1) \quad x = M^l a_l + \cdots + Ma_1 + a_0\]

with $0 \leq a_i < M$ for $i \neq l$ and $0 < a_l < M$.

The following questions arise immediately:

1. What are the conditions for uniqueness in (2.1) when we consider $x \in \mathbb{Z}$ without the restriction $x > 0$? How do we apply this in \mathbb{Z}^n?
2. Is there a radix-representation in \mathbb{Z}^n, $n = 2, 3, \ldots$, with a single base M in the sense of (2.1)?
3. How do we extend a radix-representation in \mathbb{Z}^n to \mathbb{R}^n?

Lemma 2.1. Let $M \geq 3$ be an integer and

\[D := \left(-\frac{M}{2}, \frac{M}{2} \right] \cap \mathbb{Z}\]

a digit set. Then there exists a unique radix-representation for each integer x, i.e., for any $x \in \mathbb{Z}$, there exists a unique nonnegative integer l and unique integers a_0, a_1, \ldots, a_l where $a_j \in D$ for $0 \leq j < l$ and $a_l \in D - \{0\}$, such that

\[x = M^l a_l + M^{l-1} a_{l-1} + \cdots + Ma_1 + a_0.\]
Proof. Let \(D_0 = D \) and \(D_n = \{ mn + d \mid d \in D_0 \} \) for \(n = \ldots, -2, -1, 0, 1, 2, \ldots \). Let \(x \) be an arbitrary integer. Since \(\mathbb{Z} = \bigcup_{n \in \mathbb{Z}} D_n \) and \(D_n \cap D_m = \emptyset \) unless \(n = m \), there exists a unique integer \(n_1 \) such that \(x \in D_{n_1} \). If \(n_1 = 0 \), then \(x = a_0 \) for some \(a_0 \in D \); otherwise, we have
\[
x = Mn_1 + a_0
\]
for some \(a_0 \in D \). If \(-\frac{M}{2} < n_1 \leq \frac{M}{2} \), then replace \(n_1 \) by \(a_1 \in D \) so that we have
\[
x = Ma_1 + a_0.
\]
If not, we repeat the above step for \(n_1 \) to get
\[
x = Mx_1 + a_0 \\
= M(Mn_2 + a_1) + a_0 \\
= M^2n_2 + Ma_1 + a_0
\]
with \(a_0, a_1 \in D \). Since \(|n_1| > |n_2| > \cdots \), there exists a smallest positive integer \(l \) such that \(-\frac{M}{2} < n_l \leq \frac{M}{2} \). Put \(a_l = n_l \in D \) so that we have
\[
x = M^l a_l + \cdots + Ma_1 + a_0.
\]
This completes the proof. \(\square \)

For an integer \(M \geq 3 \), define
\[
P_M = \{ M^l a_l + \cdots + Ma_1 + a_0 \mid a_0, \ldots, a_{l-1} \in D, \ a_l \in D - \{0\} \}
\]
where the digit set \(D := (-\frac{M}{2}, \frac{M}{2}] \cap \mathbb{Z} \). There then exists an one-to-one and onto natural correspondence between the integer set \(\mathbb{Z} \) and the set \(P_M \) of polynomials by Lemma 1. Since the set
\[
I := \left\{ \sum_{k=1}^{\infty} M^{-k} a_k \mid a_k \in D \right\}
\]
is an interval of length 1, every real number \(r \in \mathbb{R} \) can be decomposed into
\[
r = p + q
\]
where \(p \in P_M \) and \(q \in I \). In the following, we shall establish a number system in \(\mathbb{R}^n \), \(n = 2, 3, \ldots \), in the manner described for \(\mathbb{R} \).

The choice of a base \(M \) and a digit set \(D \) for construction of a radix-representation in \(\mathbb{Z}^n \). Let \(M \) be an \(n \times n \) matrix with integer entries. Then \(|\det M| = N \) is a positive integer. The set \(U \)
denotes an open-closed hypercube \(\prod_{i=1}^{n} \left(-\frac{1}{2}, \frac{1}{2}\right) \) in \(\mathbb{R}^n \). By elementary linear algebra the set

\[
MU := \{ Mx \mid x \in U \}
\]

has Lebesgue measure \(N \), and the set \(MU \cap \mathbb{Z}^n \) has exactly \(N \) elements which consists a residue set modulo \(M\mathbb{Z}^n \). In particular, for \(x, y \in MU \cap \mathbb{Z}^n \), \(x - y \notin M\mathbb{Z}^n \) unless \(x = y \).

Define \(C_0 \) to be the set

\[
C_0 := \{ x = (x_1, \ldots, x_n) \in \mathbb{Z}^n \mid x_i = 0 \text{ for all but one } i, \ 1 \leq i \leq n, \ i = i_0, \ x_{i_0} = 1 \text{ or } -1 \}
\]

and let

\[
C = C_0 \cup \{0\}.
\]

Theorem 2.2. Let \(M \) be an \(n \times n \) matrix with integer entries and

\[
U := \prod_{i=1}^{n} \left(-\frac{1}{2}, \frac{1}{2}\right).
\]

If

1. \(C \subset MU \) (or equivalently \(C \subset MU \cap \mathbb{Z}^n \)),
2. \(\lim_{k \to \infty} M^k U = \mathbb{R}^n \),

then for every \(x \in \mathbb{Z}^n \), a nonnegative integer \(l \) and points \(a_0, a_1, \ldots, a_{l-1} \in D_{l-1} \) and \(a_l \in D \setminus \{0\} \) are uniquely determined by the formula

\[
x = M^l a_l + \cdots + M a_1 + a_0.
\]

Remark 2.3. It seems likely that the condition \(\lim_{k \to \infty} M^k U = \mathbb{R}^n \) is equivalent to \(M \) satisfying the condition that every eigenvalue of \(M \) has modulus greater than 1, but this remains as an open question. However, it can be shown that \(\lim_{k \to \infty} M^k U = \mathbb{R}^n \) by diagonalization of the matrix with the diagonal entries being those real eigenvalues if \(M \) has only real eigenvalue greater than 1.

Proof of Theorem 2.2. Let \(D_0 = D := MU \cap \mathbb{Z}^n \) be the digit set. Define the sequence of sets \(D_k \), \(k = 0, 1, 2, \ldots \), in \(\mathbb{Z}^n \) inductively as

\[
D_k = \bigcup_{x \in D_{k-1}} \{ Mx + d \mid d \in D \}.
\]

Then we have \(D_0 \subseteq D_1 \subseteq D_2 \subseteq \cdots \). To show \(\lim_{k \to \infty} D_k = \mathbb{Z}^n \), observe that

\[
D_{k+1} = \mathbb{Z}^n \cap \{ M(x + U) \mid x \in D_k \}
\]

for each \(k = 0, 1, 2, \ldots \). See figure 1 on the next page.

By induction, suppose

\[
M^k U \cap \mathbb{Z}^n \subset D_{k+1}.
\]
Then

\[M^k U \subset \bigcup_{x \in D_{k+1}} (x + U) \]

and

\[M^{k+1} U \subset \bigcup_{x \in D_{k+1}} M(x + U). \]

Thus

\[M^{k+1} U \cap \mathbb{Z}^n \subset \left(\bigcup_{x \in D_{k+1}} M(x + U) \right) \cap \mathbb{Z}^n. \]

By (2.3) we have

\[M^{k+1} U \cap \mathbb{Z}^n \subset D_{k+2}. \]

Since, by our initial hypotheses, \(\lim_{k \to \infty} (M^{k+1} U \cap \mathbb{Z}^n) = \mathbb{Z}^n \), we have \(\lim_{k \to \infty} D_k = \mathbb{Z}^n \). Now consider any \(x \in \mathbb{Z}^n \). If \(x \in D_0 \), we are done.
Otherwise, \(x \notin D_0 \), and so there exists an unique nonnegative integer \(l \) such that \(x \in D_l \) and \(x \notin D_{l-1} \), which ensures that there exists a unique \(x_1 \in D_{l-1} \) and \(a_0 \in D \) such that

\[
x = Mx_1 + a_0.
\]

If \(l > 1 \), by repeating this step \(l \) times we get

\[
x = M^l x_1 + M^{l-1} a_{l-1} + \cdots + Ma_1 + a_0
\]

where \(a_0, a_1, \ldots, a_{l-1} \in D \) and \(x_1 \in D_{l-l} = D_0 = D \). Since \(x \notin D_{l-1} \), we have \(x_1 \neq (0, \ldots, 0) \) in \(\mathbb{Z}^n \). We complete the proof by setting \(a_l = x_l \in D - \{0\} \).

\[
\square
\]

Remark 2.4. Since the cardinality of \(C \) is \(2n + 1 \), \(C \) is a subset of \(D \) and the cardinality of the digit set \(D \) is the Lebesgue measure of \(MU \) which is \(|\text{det} M| = N \), we need an integer \(n \times n \) matrix satisfying \(|\text{det} M| \geq 2n + 1 \) in Theorem 2.2.

3. A radix-representation in \(\mathbb{R}^n \)

We say that an \(n \times n \) integer matrix \(M_1 \) is **integrally similar** to another \(n \times n \) matrix \(M_2 \) if there exists some \(Q \in \text{GL}(n, \mathbb{Z}) \) such that \(M_2 = Q M_1 Q^{-1} \). We say that an \(n \times n \) matrix is **integrally reducible** if \(M \) is integrally similar to a matrix

\[
\begin{pmatrix}
A_1 & 0 \\
B & A_2
\end{pmatrix}
\]

where \(A_1, A_2 \) are \(r \times r \) and \((n-r) \times (n-r) \) matrices respectively for some \(1 \leq r \leq n-1 \) such that \(|\lambda_{1i}| > 1 \) and \(|\lambda_{2i}| > 1 \) for all eigenvalues \(\lambda_{1i} \) of \(A_1 \) and \(\lambda_{2i} \) of \(A_2 \). We call \(M \) **integrally irreducible** if it is not integrally reducible.

Theorem 3.1. Let \(M \) be an \(n \times n \) integer matrix such that

1. \(C \subseteq MU \),
2. \(\lim_{k \to \infty} M^k U = \mathbb{R}^n \),
3. every eigenvalue of \(M \) has modulus greater than \(1 \),
4. \(M \) is integrally irreducible.

Then we have a radix-representation of \(x \in \mathbb{R}^n \),

\[
x := a_l a_{l-1} \cdots a_2 a_1 a_0 \cdot a_{-1} a_{-2} \cdots,
\]

in the sense that \(x = M^l a_l + \cdots + Ma_1 + a_0 + M^{-1} a_{-1} + M^{-2} a_{-2} + \cdots \)

where \(a_k \in D \) for \(k = l-1, l-2, \ldots, 1, 0, -1, \ldots \) and \(a_l \in D - \{0\} \) for some nonnegative integer \(l \).
Figure 2. $\bigcup\{ T + d \mid d \in MU \cap \mathbb{Z}^2 \}$ with $M = \begin{pmatrix} 2 & 1 \\ -1 & 2 \end{pmatrix}$

Corollary 3.2. Suppose that an $n \times n$ matrix M with integer entries satisfies (3) and (4) in Theorem 3.1. If $D := MU \cap \mathbb{Z}^n$, then the set $T := \{ \sum_{k=1}^{\infty} M^{-k}d_{ik} \mid d_{ik} \in D \}$ is lattice-tiles \mathbb{R}^n with lattice \mathbb{Z}^n.

Proof. See figure 2 or [1], [7], or [11]. \qed

Proof of Theorem 3.1. For $x \in \mathbb{R}^n$, by virtue of Corollary 3.2, we have $x = z + t$ for $z \in \mathbb{Z}^n$ and $t \in T$. With conditions (1) and (2) in Theorem 3.1, we have

$$z = M^l a_l + M^{l-1} a_{l-1} + \cdots + Ma_2 + Ma_1 + a_0 + M^{-1}a_{-1} + M^{-2}a_{-2} + \cdots.$$

Like a decimal expansion in \mathbb{R} we have a representation for x,

$$a_la_{l-1}\cdots a_2 a_1 a_0 \cdot a_{-1} a_{-2} \cdots.$$ \qed

Example 1. Consider a 2×2 matrix $M = \begin{pmatrix} 2 & 1 \\ -1 & 2 \end{pmatrix}$ with $|\det M| = 5$. It is easy to see that $C \subset D$ where $D = \{ (0, 0), (1, 0), (-1, 0), (0, -1) \}$ (in fact $C = D$), $\lim_{k \to \infty} M^k U = \mathbb{R}^n$, and the eigenvalues of M are
\[\lambda_1 = 2 + i, \lambda_2 = 2 - i \text{ with } |\lambda_i| = \sqrt{5} > 1, \ i = 1, 2. \] If a matrix \(A \) is integrally similar to a matrix \(\begin{pmatrix} A_1 & 0 \\ B & A_2 \end{pmatrix} \), then \(|\det A| = |\det A_1| \cdot |\det A_2| \). Furthermore, the characteristic polynomial of \(A \) is irreducible over \(\mathbb{Q} \) implies that \(A \) is integrally irreducible. Thus if \(|\det A| = p \), where \(p \) is prime, then \(A \) is integrally irreducible. We have shown that the matrix \(\begin{pmatrix} \frac{2}{-1} & 1 \\ \frac{1}{2} & -1 \end{pmatrix} \) fulfills the conditions (1)–(4) in Theorem 3.1. A point \(\begin{pmatrix} 4 & 6 \\ -6 & 1 \end{pmatrix} \) in \(\mathbb{R}^2 \) can be represented as following:

\[
\begin{pmatrix} 4 & 6 \\ -6 & 1 \end{pmatrix} := \begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ -1 \end{pmatrix} \begin{pmatrix} -1 \\ 0 \end{pmatrix},
\]
in the sense of \(\begin{pmatrix} \frac{2}{-1} & 1 \\ \frac{1}{2} & -1 \end{pmatrix}^2 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \begin{pmatrix} \frac{2}{-1} & 1 \\ \frac{1}{2} & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ -1 \end{pmatrix} + \begin{pmatrix} \frac{2}{-1} & 1 \\ \frac{1}{2} & -1 \end{pmatrix}^{-1} \begin{pmatrix} 0 \\ 1 \end{pmatrix}.\]

4. Applications and concluding remarks

There is an application of the number system in \(\mathbb{Z}^n \) described in this paper. The Cuntz algebra \(O_n \) is the \(C^* \)-algebra generated by \(N \) elements \(s_1, \ldots, s_N \) satisfying

\[s_i^* s_j = \delta_{ij} I \quad \text{and} \quad \sum_{i=1}^N s_i s_i^* = I. \tag{4.1} \]

One of the recent developments of the study of \(O_N \) is the representations on Hilbert spaces \(L^2(\mathbb{R}^n) \) or \(L^2(\mathbb{T}^n) \). The infinite nature of \(O_N \) with Cuntz properties fits into a fractal property which gives certain type of representations from wavelet, [3] or [6]. Another type of representations of the Cuntz algebra \(O_N \) is closed related to the study of the endomorphisms of \(B(\mathcal{H}) \), where \(B(\mathcal{H}) \) is the \(C^* \)-algebra of bounded linear operators on a separable, infinite dimensional Hilbert space \(\mathcal{H} \), [3], [4], and [10]. There is a correspondence between endomorphisms of \(B(\mathcal{H}) \) of Powers index \(N \) and representations of \(O_N \) up to unitary action. If the representation of \(O_N \) is irreducible, then the corresponding endomorphism is an ergodic of Powers index \(N \), vice versa. A UHF algebra is a norm separable \(C^* \)-algebra which is the norm closure of an increasing sequence of type \(I_{n_i} \)–factors and so a UHF algebra can be identified with the tensor product matrix algebra, \(\bigotimes_{i=1}^\infty M_{n_i}, \ n_i \in \{2, 3, \ldots\} \). When \(n_i = N \), for all \(i \), a UHF algebra is denoted by \(\text{UHF}_N \) which we can understand as a subalgebra of \(O_N \), where the element \(e_{i_1 j_1} \otimes e_{i_2 j_2} \otimes \cdots \otimes e_{i_k j_k} \otimes I \otimes \cdots \) in \(\text{UHF}_N \) is identified with \(s_{i_1} \cdots s_{i_k} s_{j_1}^* \cdots s_{j_k}^* \) in \(O_N \). Thus a representation of \(\text{UHF}_N \) also induces an endomorphism on \(B(\mathcal{H}) \). If the image of
UHF$_N$ under representation is weakly dense in $B(\mathcal{H})$, the corresponding endomorphism is shift of Powers index N [4] and [10]. However, the representation of O_N and UHF$_N$ are famous examples whose representations are bad [2], [3], [4], and [8] among many others. The representation π of O_N, and UHF$_N$ satisfying

$$\pi(s_i)(e_x) \in \{e_x : x \in \mathbb{Z}^n\},$$

is related with tight frame in wavelet, [6], and endomorphism on the Hilbert space $B(L^2(\mathbb{R}^n))$, was studied in [2] and [3], where $\{e_x : x \in \mathbb{Z}^n\}$ is an orthonormal basis of $L^2(\mathbb{R}^n)$ or $L^2(\mathbb{T}^n)$ where $\mathbb{T} = \mathbb{R}/2\pi \mathbb{Z}$. This kind of representations are predominant in papers, [2], [3], [4], and [8]. The hard part is to find the irreducible subrepresentations. Using our number system in \mathbb{Z}^n, we are able to show that the representation π of O_n defined by

$$\pi(s_i)e_x = e_{Mx+d_i}$$

with $d_i \in D := MU \cap \mathbb{Z}^n$ is irreducible under conditions in Theorem 2. Under same condition in Theorem 2, if we take a residue set D modulo MZ^n in \mathbb{Z}^n, we then have rich representations of O_N and UHF$_N$, but these are not irreducible, in general. We use our number system in \mathbb{Z}^n to show that the representations defined by $\pi(s_i)e_x = e_{Mx+d_i}$ with a residue set D modulo MZ^n in \mathbb{Z}^n, decomposed into finite irreducible subrepresentations, see [8].

A number system in \mathbb{R}^n, at this moment, is rather novel. When M is an integrally irreducible matrix whose eigenvalues have modulus greater than 1, then the set $\mathbf{T} := \{\sum_{k=1}^{\infty} M^{-k}d_k \mid d_k \in D\}$ has the following tiling property: the Lebesgue measure of $(x + \mathbf{T}) \cap (y + \mathbf{T})$ is 0 or 1 for $x, y \in \mathbb{Z}^n$. See figure 2. Since the set \mathbf{T} is compact, there are cases when $(x + \mathbf{T}) \cap (y + \mathbf{T}) \neq \emptyset$ even though it has Lebesgue measure 0. As a result, the radix-representation in \mathbb{R}^n,

$$a_1a_{l-1} \cdots a_2a_1a_0 \cdot a_{-1}a_{-2} \cdots,$$

described in Theorem 3.1, is not unique. If we take a subset \mathbf{T} of the set \mathbf{T} satisfying

$$\bigcup_{x \in \mathbb{Z}^n} (x + \mathbf{T}) = \mathbb{R}^n$$

and

$$(x + \mathbf{T}) \cap (y + \mathbf{T}) = \emptyset \quad \text{if} \quad x \neq y$$

for $x, y \in \mathbb{Z}^n$, the radix-representation $a_1a_{l-1} \cdots a_2a_1a_0 \cdot a_{-1}a_{-2} \cdots$ is unique. For example, in \mathbb{R}, this situation can be remedied by setting
\(\hat{T} := T - T_9 \) for
\[
T = \left\{ \sum_{k=1}^{\infty} 10^{-k}d_{ik} \mid d_{ik} \in \{0, 1, \ldots, 9\} \text{ for all } k \right\} = [0, 1],
\]
\(T_9 = \{ t \in T \mid \text{there exists a positive integer } n_0 \)
such that \(d_k = 9 \) for all \(k \geq n_0 \} \).

We do not have a general result in \(\mathbb{R}^n \), but the only case is studied. With the matrix \(M \) and the digit set \(D \) in the above Example 1, we are currently investigating possible unique radix-representations in \(\mathbb{R}^n \) using four \(\hat{T} \)'s defined as follows:
\[
\hat{T} = T - T_i, \quad i = 1, 2, 3, 4,
\]
with
\[
T = \left\{ \sum_{k=1}^{\infty} M^{-k}d_{ik} \mid d_{ik} \in D \right\},
\]
\(T_1 = T \{ (0) \} \cup T \{ (1) \} \),
\(T_2 = T \{ (0) \} \cup T \{ (1) \} \),
\(T_3 = T \{ (0) \} \cup T \{ (1) \} \),
and
\[
T_4 = T \{ (0) \} \cup T \{ (1) \} ,
\]
where
\[
T \{ (0) \} := \left\{ \sum_{k=1}^{\infty} M^{-k}d_{ik} \mid d_{ik} \in \{ (0) \} \right\}
\]
with analogous definitions for \(T \{ (1) \} \), \(T \{ (0) \} \), etc. The resulting structure suggests general results for unique radix-representation in \(\mathbb{R}^n \). But, at least, we have a number system in \(\mathbb{R}^n \) which is similar to the familiar one in \(\mathbb{R} \).

References

[1] Christoph Bandt, Self-similar sets V: Integer matrices and fractal tilings of \(\mathbb{R}^n \),

Department of Mathematics
Chung-Ang University
Seoul 156-756, Korea
E-mail: jeong@cau.ac.kr