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ON ROTATION SURFACES IN THE
MINKOWSKI 3—DIMENSIONAL SPACE
WITH POINTWISE 1-TYPE GAUSS MAP

ATHOUMANE NIANG

ABSTRACT. In this paper, we study rotation surfaces in the Minko-
wski 3—dimensional space with pointwise 1-type Gauss map and
obtain by the use of the concept of pointwise finite type Gauss
map, a characterization theorem concerning rotation surfaces and
constancy of the mean curvature of certain open subsets on these
surfaces.

1. Introduction

Recently in (2000), and in the framework of the theory of finite type
submanifolds (see [2], [3]), the authors of [8] raising the following prob-
lem: classify all submanifolds in an m—Euclidean space E™ (or in the
Minkowski space ET*) satisfying the following equation

(1.1) AG = fG,

where A in the Laplacian of the induced metric and G the Gauss map for
the submanifold, for some function f on the submanifold. The authors
of [8] have studied ruled surfaces in 3—dimensional Minkowski space E}
with pointwise 1-type Gauss map, and obtain a classification theorem
for them. Also, submanifolds in pseudo-Euclidean space with finite type
Gauss map are studied (cf. [1], [5] among others). In the paper [6] a
characterization of the helicoid as ruled surfaces with pointwise 1-type
Gauss map in 3—dimensional Euclidean space is obtained. On the other
hand, Chen and Piccini [4] made a general study on submanifolds of
Euclidean space with finite type Gauss map and classified the compact
surfaces of 1-type Gauss map.
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In the paper [9] we studied rotation surfaces in 3—dimensional Eu-
clidean space and obtained the following result.

THEOREM 1.1. Let M be a connected surface of revolution in a
3—dimensional Euclidean space E* whose axis of rotation is £. Let
M’ be any connected component of the subset M — L. Then we have:
M’ is pointwise 1— type Gauss map if and only if M’ a constant mean
curvature.

In this paper we use the concept of pointwise 1-type Gauss map
introduced in [8] to obtain the lorentz version of the above theorem:

THEOREM 1.2. Let M be a connected semi-riemmannian surface of
revolution in a 3—dimensional Minkowski space E3 whose axis of rotation
is L. Let M’ be any connected component of the subset M — L. Then we
have: M’ is pointwise 1— type Gauss map if and only if M’ a constant
mean curvature.

Throughout this paper, we assume that all surfaces M are con-
nected,and all objects are at least of class C3. Here we will agree to
interchange the notation of vectors by rows and there notions by columns

2. Preliminaries

The 3—dimensional Minkowski space E? is given with its canonical
metric dz? + dy? — dz? which we will denote by: (,). For two tangent
vectors V' = (X1, X2, X3) and W = (Y1, Y>, Y3) of its tangent space, we
have:

(2.1) (VW) = X1Y1 + XoYs — X3Ys.
The cross product V' x W of the vectors V' and W is given by
(22) VW= (XzYE; — X3Y2, -X1Y3+ X3Y,, - X 1Yo + XzYl).

By surface in the 3—dimensional Minkowski space E3 we mean an iso-
metric immersion into E3 of a connected 2-dimensional pseudo-riemann-
ian manifold M.

Let M be a surface in the 3—dimensional Minkowski space E3. The
Gauss map G sends each point of M to a unit normal vector to M. We
have, G : M — S where

St (1)
S = or
H?(1).
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The surface M is lorentzian when G takes its values in S?(1) and
riemannian when G takes its values in H?(~1).

Now we are going to recall some fundamental formulas to be used
latter in this work. Assume that the surface M in E3 is described locally
by an isometric immersion

X:UCR? — E3
(s,0) — X(sv),

where (s,v) are local coordinates on the open set U of R2.

Then on U the Gauss map G is given by the followings formula:

X, x X,

1 Xs x Xoll

The first and the second fundamental forms I and II, respectively,
are obtained on U by the following formulas:

I = (X,, X,)ds? + 2(X,, X,)dsdv + (X, X,)dv?,

(2.3) G=

(2.4)
II = (G, Xs5)ds? + 2(G, Xs,)dsdv + (G, X, ) dv?.

The mean curvature H is given on U by the following formula:

(2.5)

2H = <G>XSS> ) <XU7XU> - 2<G’ XSU> . <XS’XU> + <Gv XSS> ) <X37XS>

(XS,X3> ) <vaXv> - (<XS,XU>)2

We end this preliminaries by recalling the formula for the Laplacian.
In local coordinates (z1,z2) on a the domain U for a surface M fur-
nished with pseudo-riemannian metric say g given by its matrix (gs;)
with inverse matrix (g¥/), the Laplacian A of M is

1 0 i 0
(2.6) Az—ngg( |det(gi;)lg 83:1')'

3. Rotation surfaces in E}

We will adopt the method of describing rotation surface in E3 given
in [7]. There are three types of 1-parameter subgroups of isometries of
the Minkowski 3-dimensional space E3 that leave a line pointwise fixe.
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There are called hyperbolic, elliptic or parabolic rotations depending
whether the line fixed(axis of rotation) is spacelike, timelike or lightlike.

(i) A space line is congruent to the line: y = z = 0. The corresponding
subgroup of rotations around this axis consists of

1 0 0
0 cosh(y) sinh(p) |,
0 sinh(p) Icosh(p)

—00 < P < 0.
(ii) A timelike line is congruent to the z-axis. The subgroup of rota-
tions around this axis consists of
cos(f) —sin(@) 0O
sin(f) cos(d) 0 |,
0 0 1
0<8<2m.

(iii) A lightlike line is congruent to the line: = = 0,y = z. The
subgroup of rotations around this axis consists of

1 —t ¢
2 2

t 1-% 3% ,

t —-£ 14+%

—o00 <t < oo.

A surface is called a surface of revolution if its image is stable under a
1—parameter subgroup of isometries which leave a line pointwise fixed.
This general definition will be related to the ordinary one in terms of
rotating a profile curve which lies in a certain plane containing the axis
of rotation (see [7]).

For a surface of revolution corresponding to an axis £, Let M’ be
any connected component of the subset M — £. We have the following
lemma from (7).

LEMMA 3.1. (i) If £ is spacelike, then M’ is expressed in the form
z = g(s),y = r(s)sinh(yp), z = r(s)cosh(p); a <s<b, —c0o < p <0

whith metric
I= (gl2 _ T,IZ)dSQ + 7‘2d§02
where g and r are smooth functions of the parameter s such that
g?(s) —1"%(s) £ 0 and 7(s) #0, and for all s.
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(ii) If £ is timelike , then M’ is expressed in the form
x = r(s)cos(f),y =r(s)sin(f),z=g(s); a <s<b, 0<0 <27
whith metric
I = ("% - g?)ds?® + r?d6?,
where g and r are smooth functions of the parameter s such that
g?(s) —7"%(s) #0 and r(s) #0, and for all s.

(iii) If £ is timelike , then M’ is expressed in the form

z=1t9-f)
y=/+%0@-1
z=g+5(9—f)

a<s<b —co<t<oo
whith metric
I=(f7?-g¢%)ds* +(f* - ¢")at?,
where f and g are smooth functions of the parameter s such that

g%(s) — f(s) #0 and g(s) — f(s) #0, and for all s.

Conversely, a surface given in the above form in each case is a surface
of revolution ; the profile curve is s — x = g(s),z = r(s) in case (i) ;
s — x =1(s),z = g(s)in case (ii) ; s —» y = f(s),z = g(s) in case (iii)
(see [7]).

In addition to above lemma we have the followings results.

LEMMA 3.2. (a) For a surface of revolution given in (i) in the lemma
3.1 and expressed in the form

(3.1) X(s,%) = (2(s), z(s) sinh(¢), z(s) cosh(¢)),

we have, when the profile curve is parametrised by the arc length s and
when we assume = = z(s) > 0, the following results.
-(al) The first and the second fundamental forms are given by

{ I =e1ds® + 22dy?

(32) II =g (Z/l'” . .'L‘,Z”) + (z’x)dg&Q,

where €1 = *1.
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-(a2) The mean curvature H satisfy

{ 2H_€1( 1.1 .’ElZII)+(

3.3
( ) 2Hl_€1( il xlz/ll)_|_ ;)l.

-(a3) The Laplacian is given by

0?2 20 1 62

34 A= —(e(=—+ )+ -

(34) (61(832 + z 83) +

(b) For a surface of revolution given in (ii) in the lemma 3.1 and
expressed in the form

(3.5) X(s,0) = (z(s) cos(8), z(s) sin(8), 2(s)),

we have, when the profile curve is parametrised by the arc length s and
when we assume z = z(s) > 0, the following results.
-(bl) The first and the second fundamental forms are given by

{ I =e1ds? + z2dh?

(3.6) II = 81(2”$/ _ Z’.’E”) + (z’x)d92,

where £; = £1.
-(b2) The mean curvature H satisfy

2H_€]_ Il ! l I/
(37) { 2H,_6(( /II ! _ I ,)”)"f('

-(b3) The Laplacian is given by

02 20 1 62
(3.8) A—_(gl(@_{_;%)-{_ﬁgéﬁ)'
(c) And for a surface of revolution given in (iii) in the lemma 3.1 and
expressed in the form

(3.9)
2 2
X(5,2) = (62(5) — y(s))su(s) + 5 (2(5) = y(s))s 2(6) + 5 (2(5) = y(s)),

we have, when the profile curve is parametrised by the arc length s and
when we assume z(s) — y(s) > 0, the following results.
-(c1) The first and the second fundamental forms are given by

{I = e1ds? + (z — y)?dt?

(3.10) II = 81( /y// y’z”) 4 (z _ y)(z/ _ y,)dtQ,

where g1 = £1.
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-(c2) The mean curvature H satisfy

2H = 51(Z/y” _ y’Z”) -+ (z;: g/)
2Hl — 8]-(zlylll _ yIZ”I) + (Z : z )l.

z

(3.11)

-(c3) The Laplacian is given by

0?2 -y 0 1 0?

92+ 3 T e
Os z—1y Os (z —y)* Op

(3.12) A= (e ).

Proof. We begin by one remark. The surfaces of revolution given
above in 3.1, 3.5, and 3.9 are particular cases of the surfaces of revolution
given in the lemma 3.1 in (i), (ii), and (iii), respectively. Now we have
to proof the relations given in (a),(b), and (c¢). Consider first the case
of surfaces de revolution in (a):

X(s,¢) = (2(s), z(s) sinh(), z(s) cosh(¢)).

In (al) we only have to proof the second formula for the seconde
fundamental II, since the first formula of first form fundamental I is a
particular case of (i) when the profile curve is now parametrised by its
arc length s. By the following relations

X;s = (2,2 sinh(yp), 2’ cosh(yp),
X, = (0, z cosh(p), z sinh(p)
we get
X5 x X, = (—za', 22" sinh(p), zz’ cosh(yp)),
where we get the Gauss G
(3.13) G = —(2, 2’ sinh(yp), 2’ cosh(yp)) and (G,G) = —¢;.

With the Gauss map G so determined, we use again the relations
above to find the followings vectors:

Xss = (2", 2" sinh(¢p), 2" cosh()),
Xsp = (0,2’ cosh(p), z’ sinh{y))
X .o = (0,2 sinh(yp), 2’ cosh(yp)).

Then we find the functions

e:= (G, X)) =2'2" —2'2"; g:= (G, Xpp) =22; [:=(G,Xs)=0.

From these quantities we get easily the formula for II by using the for-
mula given in 2.4. And using 2.5 we get the formula for the mean
curvature H and see easily the formula for its derivative H'. To find the
Laplcian A we apply the formula 2.5 with the metric I. Therefore we
have proved relations in (al).
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As we have seen, the prove the remain relations in (b) and (c), we
search in each case, the Gauss map G, and the corresponding three
vectors as above, that is, the vectors Xgs, Xs9,and Xgg for (b), and
the vectors X,s, Xst,and Xy for (¢). An easy computation give the
following relations for surfaces of revolution of type(b) and type(c). By
using respectively 3.5 and 3.9 we have.

e For type (b): From

z' cos(9) —x sin(6)
(3.14) Xs=| #'sin(8) |,Xe= z cos(f)
Z 0.
we get the following
2’ cos(6) z” cos(6)
(3.15) G=-| Zsin(d) |;Xss=1{ 2'sin(9) |;
x/ Z”
—z' sin(9) -z’ cos(8)
Xsp = z' cos(f) | ;Xgg= | —a'sin(h)
0 0

e For type (c): From

C ) (z—y)
(3.16) Xs = ’—|- & ( y) X; t(z—y)
2+ t_( —) t(z —y).
we get the following
—t(z' ~ ) t(z" —y")
(3‘17) G =— z/_ e ( / y) ;Xss"—_ y//+§%_(z//_y//) :
v+5E —y) '+ 5" —y")
0 0
Xse=| (z—y) | Xu=| (z—vy)
(z —y); (z =)
From these vectors one gets easily the results in (b) and (c). d

4. The proof of the theorem

In order to proof the theorem, we proceed in the following fashion.
We have to prove a first part, that is, for a given connected component
M’ of a surface revolution M of type (i) or (ii) or (iii) in lemma 3.1,
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the mean curvature H is a constant when M’ is pointwise 1-type Gauss
map. And in a second part, we have to proof the converse for M’ (in
each of three types). Now we consider some facts and remarks.

- We have to consider, for a surface M of type (i) any connected
component M’ of {M — L, with z =7(s) > 0} or of {M — L, withz =
r(s) < 0}. '

And for a surface M of type (ii) or (iii) we have to consider any
connected component M’ of {M — £ with z = r(s) > 0} or of {M —
L, with z = 7(s) < 0} and respectively, of {M — £, with z —y =
g(s) — f(s) > 0} or of {M — L, with z —y = g(s) — f(s) < 0} .
And in each of these six cases we have prove that the mean curvature is
constant when the component M’ is pointwise 1-type Gauss map.

Now let us make some remarks.

One can see that is not necessary in proving the constancy of H to
consider in each type the two components given above in each type, we
are going to consider only one the them, and this will be the way we
follow here . In particular this justified the surfaces considered in lemma
3.2. A last remark is: we will agree to prove here the complete result
for types (i) and (iii); for (ii) it is not difficult to see that things work
the same. After these remarks we can begun proofs.

Stepl: case (i) We consider a surface of revolution M’ in those of type

(a) in lemma 3.2, that is as in 3.1. Then M’ is a connected component
of the set {M — L, with z(s) > 0}. Let’s express the condition AG = fG
on M' for the Gauss map G = —(z/, 2’ sinh(yp), 2’ cosh(y)).

We get from G the following three vectors :

G, = — (2", 2" sinh(p), 2" cosh(yp)).
Gss = — (2", 2" sinh(p), 2" cosh(p)).
Gep = — (0, 2 sinh(p), 2’ cosh(yp)).

Then, the Laplacian of the Gauss map by applying the formula 3.4 is
the vector:

'
1
—{ El(Gss + %GS) + _x—QG‘P‘P ]
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So we get easily that

4 El(x/// + %IIL‘”) W

AG {sl(z’” + %z”) + ;lgz’} sinh(¢p)

—

| {sl(z’” +Z2) + ;152’} cosh(yp). J

From this formula it is convenient to introduce the following func-
tions. Let A =z 4+ Z2” and B = &; (2" + %z”) + % 2'. Then we can
write that

AG = (14, Bsinh(p), B cosh(p)).

From which we get the quantity:
(AG,G) = —(e17'A — 2'B).
In fact, the condition AG = fG is equivalent to the condition
AG +&1{AG,G)G = 0.
This condition is then equivalent to the following three equations:
14 —e1(e12’ A - 2 B){(—2') =0
{B —¢e1(e12’ A — 2’ B)(—2' }} sinh(p)
{B —¢1(e12' A — 2/ B)(—7' )} sinh(p).
These are equivalent to the two followings equations:
*) (1+e2)A-2'2’B=0
2’2/ A4 (1 —€12?)B =0.
Better, by using the relation

(4.1)

(r): 2% ~2” =¢

we see that the condition in (x) is then equivalent to the following

(42) w0 { Sa2uD o

By using once again the relation (r) and its derivative, and after an
easy computation, we get the following:
/

(4.3) ZA—e1d’B= (2" -2'2")+ 81(%),.

o(We have omitted this computation in order to avoid the proof to be
so long, but in step 2 below for surfaces of type (iii) we give the complete
computation). e
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On the other hand, from the second formula in 3.3 for derivative of
mean curvature H we get:

’
(z/xm _ .'L'IZ"I) = 9% H — 61(%)1.

And inserting the left member of this relation in 4.3, we see that:
Z/A—¢e12'B=2H'.

Now the condition 4.2 becomes:

ZH =0
zZ/H =0.

From this we get with the relation (r) that H'? is zero, therefore H' is
identically zero on M’.

Conversely, assume that surface M’ of type (a) in lemma 3.2 has
constant mean curvature. We have to show how we can obtain the
condition 4.2. In fact we have the relation:

ZI
(le//l _ .’L'IZ”,) — 2€1Hl _ 51(;)/.

And the relation

!/
ZA—ex'B= (2" —2'2") + 61(—2)/.

Since H' = 0, then we get from these two relations that:
JA—e2’B=0.

To get the two equations of the condition 4.2, we multiply the equa-

tion above by 2’ and by z’, respectively. This proves the theorem in case
of (i).

Step2: case (iii) We consider a surface M in the type (iii), therefore
as in case(c) of lemma 3.2. And we assume as in stepl, that the set M’
is pointwise 1—type Gauss map. As before, we consider M’ a connected
component of the set {M — L, with z(s) — y(s) > 0}.

Since

2 t2

t
G=—(-t(z-y);7 - 5(2’ -y ¥+ -2—(% -)),
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by setting U := 2z’ — 3/, one get easily the following vectors:

U’ U
(4.4) G=-| Z-2U |[;6,=| -8U0" [;
y - U y' - SU"
e 0
Gss=| 2"'— %U’” i Gy=1 =-U
y' — LU -U

Then, the Laplacian of the Gauss map by applying the formula 3.12
is the vector:

U,

—[ €1(Gss + i Gs) + fj—zGW ]

So we get easily that
ext(U" + (5)U")

AG = | ei(~2"+5U") +e(-2"+ 5UNE) + &
a(—y" + 5UM) + e (-y" + SU ) + &
ert(U"” + (5)U")

{er(=2" = 2"(§)N + &} + Sa U + (5)U”)

€1t(U'" + (_IIJT’)U//)

K {er(=y" =" (§) + ) + e + (F)U) /

In the view of this formula it is convenient to introduce the following
functions. Let

A= (U" + (5)U")
(4.5) B :=g1(=2" = 2"(
C = a(-y" ~v"(%)



On rotation surfaces in the Minkowski 3—dimensional space 1019

Then the Laplacian of G is:

tA
B+%A .
C+5A

Now let us compute the function g : = (AG, G). We have

277/ ’ tz ! tz ! t2 ! t2
9= —tUA+( - SUNB+5A4) - - 5U)C+ 5 4)
2 2
=—t*U'A+ (¢/B) + %(Z,A —-U'B)+ (-y'C) + %(U'C -y A)
2

2
= —2UA+ (/B -yC)+ %A(z’ )+ %U’(C - B).

Yy =U
and

C-B=A

Therefore we have g := (AG,G) = 2/’B — 3'C. Now the condition
AG = fG which is equivalent to AG + €1 (AG, G)G = 0, becomes:

[ tA+
e1(z/B—y'C)(—tU") =0

) B+E2A) +e1(ZB-yO) (7 - LU =0

2 2
| Cc+54)+{ #B-yO)W - LU =0.

The direct computation of the left-hand member of each the these
relations gives a polynomial in ¢t with functions of s as the coefficients.
Thus by adjusting the power we get the equivalent following condition
A-a(ZB-y'C)U' =0
B+e(ZB-yC)Z =0

C+ea(@B-y0)y.
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But since A = C — B, and U’ = 2/ — 4/, This condition is equivalent
to the following

~(14e(Z? -y 2))B+(1—e1(y* —-y'2))C =0
(1+¢€12?)B —e1y'2/C =0

g1y’ B+ (1 —e19?)C = 0.
By multiplying the second equation by —1 and adding it to third
equation we get the first equation. And by using the relation
() :y? — 2% =gy,
the condition above, that M’ is pointwise 1-type Gauss map, is now
/ ! /
Y(y'B-2C)=0
(4.6) { Z(yB-2'C)=0.
Now let us compute the quantity ¢’ B — 2/C. With the B and C given
by 4.5 and U’ = 2/ — ¢/, we have.
yB-—2C
— y'(sl(—z”’ - z”(%)) , g'z _ Z’(é‘l(— " —y”(l )+ gz)
— 61((2,?/” _ y/z///) + %(z’y !
_ 51((z’y”’ _ y/z///) + %(z/y// _ y/z//)) _u”?
Now consider the term U’(2'y” — ¢/2"). By using the relation (/) :
y? — 2" = ¢) and its derivative one get easily that
U/(Z/yll _ ylzll) — 51U”.
Then y'B — 2'C becomes

y'B - 2C = 61((2'1/” . y/Z///) + g{; _ %’22_
— E1((2,/:,/// _ ylzlll) 1+ (%)/
Finally, by using this with the relation
U/
2HI — 81((Z/ym . y/zlll) + (__[j_)l

we see that the condition (%) above is:

y/Hl — 0

ZH = 0.

Now we can conclude as in Stepl that H is constant on M’. The converse
is obtained easily as in Stepl. A this prove the theorem. |
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