An Integrated Cell Processor for Single Embryo Manipulation

  • Park, Jung-Yul (Microsystem Research Center, Korea Institute of Science and Technology) ;
  • Jung, Seng-Hwan (Digital Bio Technology) ;
  • Kim, Young-Ho (Microsystem Research Center, Korea Institute of Science and Technology) ;
  • Kim, Byung-Kyu (Microsystem Research Center, Korea Institute of Science and Technology) ;
  • Lee, Seung-Ki (School of Electrical, Electronic and Computer Engineering, Dankook University) ;
  • Ju, Byeong-Kwon (Microsystem Research Center, Korea Institute of Science and Technology)
  • Published : 2004.10.01

Abstract

In this paper, we present a novel integrated cell processor to handle individual embryos. Its functions are composed of transporting, isolation, orientation, and immobilization of cells. These functions are essential for biomanipulation of single cells, and have been typically carried out by a proficient operator. The purpose of this study is the automation of these functions for safe and effective cell manipulation using a MEMS based cell processor. This device is realized with a relatively simple design and fabrication process. Experimental results indicate that it can act as an efficient substitute for essential but very tiresome and repetitive manual work while contributing significantly to the improvement of speed and success rate of operation by facilitating cell manipulation. The cell viability test for the device is studied through the distribution of mitochondria in mice embryos and cultivation of cells for 86h.

Keywords

References

  1. Y. Sun and B.J. Nelson, 'Biological cell injection using an autonomous microrobotic system,' The International Journal of Robotics Research (IJRR), vol.21, pp.861-868, 2002
  2. K. K. Tan and S. C. Ng, 'Computer-controlled piezo micromanipulation system for biomedical applications,' Engineering Science and Education Journal, pp.249-256, 2001
  3. K. Yanagida, H. Katayose, H. Yazawa, Y. Kimura, K. Konnai, and A. Sato, 'The usefulness of a piezomicromanipulator in intracytoplasmic sperm injection in humans,' Human Reproduction, Vol.14, No.2, pp.448-453, 1998 https://doi.org/10.1093/humrep/14.2.448
  4. T. Nakayama, H. Fujiwara, K. Tastumi, K. Fujita, T. Higuchi, and T. Mori, 'A new assisted hatching technique using a piezo-micromanipulator,' Fertility and Sterility, vol.69, no.4, 1998
  5. I. Glasgow, H. Zeringue, D. Beebe, S. Choi, J. Lyman, N. Chan, and M. Wheeler, 'Handling Individual mammalian embryos using microfluidics,' IEEE Transactions on Biomedical Engineering, vol. 48, no. 5, May 2001, pp. 570-577
  6. E. Jager, C. Immerstrand, K. Peterson, K. Magnusson, I. Lundström, and O. Inganäs, 'The Cell Clinic: Closable Microvials for Single Cell Studies,' Biomedical Microdevices, vol. 4, 2002, pp.177-187
  7. W. Lewis, B. Rosa, L. Peter, M. Elliot, S. Jim, and M. J. Thomas, Principles of development, Oxford University Press, 2nd edition, 2002
  8. B. Kim, D-H. Kim, J-Y. Park, Y-H. Kim, S-J. Kwon, H. Kang, and S. Jung, 'Autonomous Biomanipulation Factory for Manipulating Individual Embryo Cells,' Invited Paper, 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003), Las Vegas, USA, October 27-November 1, 2003. (Workshop: Microrobotics for Biomanipulation)
  9. L. Westerlaken, F. Helmerhorst, J. Hermans, and N. Naaktgeboren, 'Intracytoplasmic sperm injection: position of the polar body affects pregnancy rate,' Human Reproduction, vol.14, no.10,1999, pp.2565-2569
  10. R. H. Carlson, C. Grabel, S. Chan, and R. H. Austin, 'Activation and sorting of human white blood cells,' Biomedical Microdevices, vol.1, pp.39-47, 1998
  11. S. Masuda, M. Washizu, and T. Nanba, 'Novel methods of cell fusion and handling using fluid integrating circuit,' Seventh International Conference on Electrostatic Phenomena (Electrosatitcs 87), Oxford, U.K., pp.69-74, 1987
  12. S. A. Kaur and H. S. Virk, 'Conduction of bacteria and blood cells through ply carbonate sieves,' Indian J. Pure Appl. Phys., vol.33, pp.350-352, 1995
  13. M. P. Sheetz, in Laser Tweezers in Cell Biology, vol. 55 of Methods in Cell Biology, Academic Press, New York, 1997
  14. J. E. Molloy and M. J. Padgett, 'Lights, action: optical tweezers,' Contemporary Physics, vol. 43, pp.241-258, 2002
  15. M. P. Hughes, Nanoelectromechanics in Enginnering and Biology, CRC Press, 2003
  16. T. Müller, G. Gradl, S. Howitz, S. Shirley, T. Schnelle, G. Fuhr, 'A 3-D microelectde system for handling and caging single cells and particles,' Biosensor & Bioelectronics, vol. 14, 1999, pp. 247-256
  17. R. Pethig and G. Markx, 'Applications of dielectrophoresis in biotechnology,' Trends in Biotechnolgoy, vol.15, 1997, pp. 426-432
  18. E. Smela, O. Inganas, and I. Lundstrom, 'Differential Adhesion Method for Microstructure Release: An Alternative to the Sacrificial Layer,' Transducers '95, Stockholom, Sweden, 1995, pp. 218-21
  19. J. Ryu, S. Jung, B. Kim, S-K.Lee, and J-O.Park, 'Thickness characteristics and improved surface adhesion of a polypyrrole actuator by analysis of polymerization process,' Polymer-Korea, submitted