Traffic Forecasting Model Selection of Artificial Neural Network Using Akaike's Information Criterion

AIC(AKaike's Information Criterion)을 이용한 교통량 예측 모형

  • Published : 2004.12.31

Abstract

Recently, there are many trials about Artificial neural networks : ANNs structure and studying method of researches for forecasting traffic volume. ANNs have a powerful capabilities of recognizing pattern with a flexible non-linear model. However, ANNs have some overfitting problems in dealing with a lot of parameters because of its non-linear problems. This research deals with the application of a variety of model selection criterion for cancellation of the overfitting problems. Especially, this aims at analyzing which the selecting model cancels the overfitting problems and guarantees the transferability from time measure. Results in this study are as follow. First, the model which is selecting in sample does not guarantees the best capabilities of out-of-sample. So to speak, the best model in sample is no relationship with the capabilities of out-of-sample like many existing researches. Second, in stability of model selecting criterion, AIC3, AICC, BIC are available but AIC4 has a large variation comparing with the best model. In time-series analysis and forecasting, we need more quantitable data analysis and another time-series analysis because uncertainty of a model can have an effect on correlation between in-sample and out-of-sample.

최근 교통량 예측을 위한 인공 신경망(Artificial neural networks : ANNs) 구조와 학습방법에 대한 연구가 다양하게 시도되고 있다. 이것은 신경망이 유연한 비선형 모형(non-linear model)으로 강력한 패턴 인식 능력을 가지고 있기 때문이다. 그러나, 신경망은 비선형 모형이기 때문에 많은 매개변수(parameter)를 사용하게 되면서 과적합(overfitting) 문제에 부딪히게 된다. 본 논문에서는 이러한 교통량 예측을 위한 신경망 모형에서 과적합을 해소하기 위한 방안으로 매개변수에 대한 다양한 모형선택기준(model selection criterion)에 대한 적용성에 대해서 알아보았다. 특히, AIC계열을 중심으로 모형선택기준으로 선택된 모형이 과적합 경향을 해소하고 시간적 전이성을 보장할 수 있는지를 분석하는데 본 연구의 목적을 두고 있다. 교통량 자료를 신경망 모형에 적용하여 분석한 결과, 첫째 학습자료(in-sample) 모형선택기준에 의해 선택된 모형이 검증자료(out-of-sample)의 최적의 성능을 보장하지는 못한다는 결과를 얻었다. 즉, 본 연구에서 기존의 연구에서처럼, 학습자료(in-sample)의 최적 모형이 검증자료(out-of-sample)의 성능과 직접적인 관계가 없다는 것을 알 수 있었다. 둘째 모형선택기준의 안정성을 분석한 결과 AIC3, AICC, BIC는 안정적인 모형을 선택하는 기준으로서 의미가 있는 것으로 분석되었다. 하지만, AIC4의 경우는 최상의 모형과 편차가 큰 것으로 분석되었다. 시계열 자료 분석과 예측에 있어서 모형의 불확실성은 학습 자료와 검증 자료의 상관관계에 영향을 줄 수 있음에 비춰볼 때, 앞으로 보다 많은 자료에 대한 분석이 필요하다고 판단되며, 다른 시계열 자료에 대한 분석이 요구된다. 수 없었지만, 확정적 통행배정모형으로 설정한 경우, Stackelberg게임 접근법이 Cournot-Nash게임 접근법 보다 더 우수함을 확인할 수 있었다.다.수안보 등 지역에서 나타난다 이러한 이상대 주변에는 대개 온천이 발달되어 있었거나 새로 개발되어 있는 곳이다. 온천에 이용하고 있는 시추공의 자료는 배제하였으나 온천이응으로 직접적으로 영향을 받지 않은 시추공의 자료는 사용하였다 이러한 온천 주변 지역이라 하더라도 실제는 온천의 pumping 으로 인한 대류현상으로 주변 일대의 온도를 올려놓았기 때문에 비교적 높은 지열류량 값을 보인다. 한편 한반도 남동부 일대는 이번 추가된 자료에 의해 새로운 지열류량 분포 변화가 나타났다 강원 북부 오색온천지역 부근에서 높은 지열류량 분포를 보이며 또한 우리나라 대단층 중의 하나인 양산단층과 같은 방향으로 발달한 밀양단층, 모량단층, 동래단층 등 주변부로 NNE-SSW 방향의 지열류량 이상대가 발달한다. 이것으로 볼 때 지열류량은 지질구조와 무관하지 않음을 파악할 수 있다. 특히 이러한 단층대 주변은 지열수의 순환이 깊은 심도까지 가능하므로 이러한 대류현상으로 지표부근까지 높은 지온 전달이 되어 나타나는 것으로 판단된다.의 안정된 방사성표지효율을 보였다. $^{99m}Tc$-transferrin을 이용한 감염영상을 성공적으로 얻을 수 있었으며, $^{67}Ga$-citrate 영상과 비교하여 더 빠른 시간 안에 우수한 영상을 얻을 수 있었다. 그러므로 $^{99m}Tc$-transierrin이 감염 병소의 영상진단에 사용될 수 있을 것으로 기대된다.리를 정량화 하였다. 특히 선조체에서의 도파민 유리에 의한 수용체 결합능의 감소는 흡연에 의한 혈중 니코틴의 축적 농도와 양의 상관관계를 보였다

Keywords

References

  1. 백남철(2002), 베이지안 샘플링과 신경망판별함수를 이용한 교통량 패턴그룹기반의 AADT추정(Traffic Pattern Groups-based estimation of AADT using Bayesian Sampling and Neural Network Discriminant Functions), 서울대학교 대학원 박사학위논문, pp.57-77
  2. 윤혜경(2002), AIC를 이용한 신경망모델 선정에 관한 연구, 한양대학교, 석사학위논문
  3. Akaike, H.(1969), Fitting autoregressive models for predictions. Annals of the Institute of Statistical Mathmetics 21, pp.243-247 https://doi.org/10.1007/BF02532251
  4. Akaike, H(1973), 2nd International Sysmposium on Information Theory, chapter Information theory and an extension of maximum likelihood prinsiple, pp 267-281. Budapest:Akademia Kiado
  5. Akaike, H(1974), A new look at the statistical model identification IEEE Transactions on Automatic Control AC-19, pp.716-723
  6. Akaike, H(1978), Abayesian analysis of the minimum aic procedure, Annals of Insititute of mathematical Statistics A(30), pp.9-14
  7. Bishop, C.M.(1995), Neural network for pattern recognition, pp 116-140, pp.371-380
  8. Fausett, L.(1994), Fundamental of neural networks, pp.11-21, pp.289-316
  9. Martin, T.H., Howard, B.D. and Mark, B.(1996), Neural network design, chap. 11, pp.1-25