RTLinux 기반의 3차원 입체 카메라 멀티미디어 시스템을 이용한 원격 감시 및 제어 환경 설계 및 구현

이정배†, 최길림**, 김태균***, 김선봉****

요 약

본 논문에서는 클라이언트/서버 형태로 신발 공정에 관한 카메라 원격 감시 제어 시스템을 웹 기반으로 설계하고 구현하였다. 클라이언트가 원격으로 영상을 감시하고 제어하기 위한 모듈들은 JAVA를 기반으로 제작하였으며, 실시간 제어를 위한 카메라 서버는 RTLinux를 기반으로 구성되며, 그 외에 드라이브와 API를 개방하였다. 이러한 소프트웨어 제작과 Lego 기반의 프로토타입을 통해 산업 현장에서, 3차원 스테레오 카메라 웹을 통해 실시간으로 카메라를 제어하는 방법을 제시하고자 한다.

A Design and Implementation of Remote Monitoring and Control Environments Using 3-Dimensional Camera Multimedia System Based on RTLinux

Jeong-Bae Lee†, Gil-Lim Choi**, Tae-Gyun Kim***, Sam-Ryong Kim****

ABSTRACT

This thesis is dealing with conveyor remote monitoring and control system for shoes process formed by client/server, which is based on Web. Modules for watching and controlling images in a remote by client is manufactured under JAVA, and conveyor server for real-time controlling is founded on RTLinux. And device driver and APIs are developed based on it. Through both manufacturing these software and LEGO-based prototyping, it would present the real-time conveyor controlling system founded on Web and 3-dimensional stereo camera to be applied to industrial spots.

Key words: Remote Monitoring and Control Module(원격 감시 제어 모듈), Real-Time Controlling(실시간 제어), Prototyping(프로토타입), 3-Dimensional Stereo Camera(3차원 스테레오 카메라)

1. 서 론

사회 각 분야에 있어서 원격 제어 및 원격 감시 기술은 이제 일반화 되었으며 공장자동화(Factory Automation)뿐만 아니라 정보가전 분야에서도 필수적인 기술이 되었다. 그러나 원격 제어 시스템의 개발에 있어서 원격 제어 시스템은 대규모 공정을 대상으로 하는 대형 프로젝트의 성공을 뒷받침하고 있으므로 이 시스템에 대한 테스트는 한계를 가지고 있다. 또한 각종 공정 현장에 적용할 제어 및 모니터링 환경을 설치하고자 할 때, 실물과 현장에 설치하기에 필수적인 시간이 오래 걸리는 단점이 있다. 또한 시

*교신저자(Corresponding Author): 이정배, 주소: 충청남도 아산시 탑령민(336-708), 전화: 041)530-2251, FAX: 041)530-2876, E-mail: jblee@sunmoon.ac.kr
접수일: 2004년 8월 30일, 안내일: 2004년 10월 15일

**중점연구, 세종대학교 컴퓨터정보학부 부교수

***정회원, 경남정보대학 컴퓨터정보계열 부교수
(E-mail: grchoi@kit.ac.kr)

****부산외국어대학교 컴퓨터공학과 교수
(E-mail: tgkim@pufs.ac.kr)

*****경남정보대학 컴퓨터정보계열 교수
(E-mail: ks889@nongjung.kit.ac.kr)

이 논문은 2002년도 산학연대 교육과정 연구비 지원을 받았음을.
행착오를 줄이기 위하여 여러 형태로 비슷한 환경을 구현하여 추후 기법들을 시험해 볼 수 있는 시뮬레이션 환경을 조성할 필요가 있다. 이를 위해 본 논문에서는 3차원의 스테레오 입체 카메라를 적용하여 공중제어 등 여러 가지 응용 환경에 적용할 수 있는 기법을 제시한다. TCP/IP와 RTP를 이용하여 컨베이어 시스템을 웹 기반으로 실시간 원격 감시 및 제어를 하도록 구성할 것이며, RTLinux와 IP/다중복작 인터페이스 제어 보드, ISA 인터페이스 제어 보드, 그리고 레고 기반의 프로토타이핑을 통해 실시간 신호 전송 컨베이어 제어를 위한 원격 감시 및 제어 시스템 환경을 설계 및 구현하였다. 이를 통해 Client/Server 환경에서 클라이언트가 원격지에서 3차원 스테레오 입체 카메라를 이용하여, 직접 감시하고 제어하는 모듈을 만들어 실제 공중에서의 컨베이어 제어 및 감시 시스템의 적용 방법을 제시하도록 한다.

2. 시스템 기본 환경

디바이스 드라이버 설계 환경

디바이스 드라이버는 유저 프로그램의 요청을 받아 제어 보드에 명령을 내리거나, ISA 인터페이스 제어 보드에서 정보를 받아오는 일을 하는 시스템 프로그램이다. 일반 리눅스에서의 디바이스 드라이버는 유저 프로그램의 요청을 받아 서비스를 하는 구조로 되어 있으며, 이러한 디바이스 드라이버의 작동 태이밍은 리눅스 커널에서 입의로 정해져 되어 있다. 이는 제한 시간 내에 정해진 작업을 처리해야 하는 실시간 시스템 특성에는 그리 적합한 구조가 아니다. 예를 들어 Bottom Half과 같은 부분에서는 커널의 원인으로 제한 시간을 초과하는 상황이 생길 수도 있기 때문이다. 이에 비해 RTLinux의 경우는 작업의 우선권을 개발자가 설정할 수 있으며, RTLinux 기반으로 제작된 다바이스 드라이버는 일반 리눅스 기반의 다바이스 드라이버보다 실시간 시스템에 더 적합하다. 그림 1은 실제 제작된 RTLinux용 다바이스 드라이버 구조도이다.

제작된 다바이스 드라이버는 그림 1에서 보는 바와 같이 크게 4가지 기능으로 구성되어 있다. 첫째는 DMA를 통해 전달되어 오는 센서 측정 값을 유저 프로그램으로 넘겨주는 부분이다. 여기서는 파라마터 데이터 램을 조절해 인/출력 트래픽 줄여주는 필터를 삽입하여 효율성을 향상시켰다. 필요에 따라 피크 노이즈를 제거하는 메디안(median) 필터도 사용 가능하다. 두 번째는 엑츄에이터로 전달되는 데이터를 처리하는 부분이다. 여기서는 유저 프로그램의 명령을 받아 제어 보드에 넘겨주는 역할을 한다. 다바이스 드라이버의 명령을 받은 제어 보드는 해당 엑츄에이터 내의 PWM 필터의 주기를 조절한다.

세 번째는 입/출력 데이터 외에 Flex 점에 전달되는 제어 명령을 주고받는 부분이다. 이 작업은 유저 프로그램의 요청에 따라 결과를 알려주는 것으로 이는 RT-FIFO를 사용한다. 필요에 따라 유저 프로그램에서는 하나의 FIFO를 이용하므로 보이도록 할 수도 있다. 네 번째는 응용 프로그램에서의 필요에 따라 삽입된 것인데, 바로 회전 센서의 회전 방향과 회전수를 측정하기 위한 루틴이다. 이것은 고속 회전 환경에서 정확하게 회전 방향과 회전수를 계산하기 위해 유저 프로그램의 필요에 따라 추가되어진 기능이다.

제작된 다바이스 드라이버에서는 이러한 각 기능 단위의 프로그램 인터페이스마다 RT-FIFO를 각각 사용하도록 구성하였으며, 총 5개의 RT-FIFO를 사
응하고 있다.

문제 1. 제어 API 향상

디바이스 드라이버 제작 후에는 이를 쉽게 사용하기 위해 응용 프로그램을 위한 API를 제작하였다. 기본적인 입력출력을 고려한 API들이 제공되며, 응용 사례에 따라 얼마든지 기능이 추가되어 질 수 있을 것이다. 디바이스 드라이버를 제어하는 API 함수는 20개 정도가 있지만, 여기서는 몇 가지만 소개하고자 한다.

- int init_fifo() : Device driver의 RT-FIFO를 open하고, FIFO에서 넘어오는 데이터를 받는 Thread를 생성시킨다.
- int close_fifo() : init_fifo에서 생성했던 Thread를 종료시키고, 사용한 RT-FIFO를 close하는 일을 한다.
- int set_pwm_rate(unsigned long pwm_rate) : 전체 응答레이터(Actuator)에 공급되는 PWM Pulse의 기준 클릭의 주파수를 설정.
- int set_motor(int motor_num, int motor_dir, int motor_speed) : 특정 채널의 응답레이터에 동작 명령을 내린다.
- int get_motor_speed(int motor_num) : 대상 응답레이터 채널에 설정된 속도 값을 읽어온다.
- int get_sensor(int sensor_num) : 대상 채널에서 DMA를 통해 읽어들인 가장 최근 값을 읽어온다. (리턴 값은 0~255)
- int get_switch_sensor(int sensor_num) : DMA를 통하여 들어온 대상 채널의 최근 값을 읽어서 129 이상인 경우 1을 리턴하고, 반대의 경우 0을 리턴 한다. 터치 센서의 경우 버튼을 누르면 100 이하의 값으로 떨어지므로 이를 통해 On/Off 상태를 알 수 있다.
- int set_RT_rotation_sensor(int sensor_num, int Count) : 지정된 모터의 회전 수를 지정할 수 있도록 회전센서의 회전 값을 설정한다.

2.1 3차원 스테레오 입체 카메라를 위한 제어 모듈

세계 각국은 인터넷 기반 정보사회를 구현하기 위하여 국가.사회적 핵심 건설으로 정보 고속도로의 구축 및 IT 교육의 저연화를 통한 핵심 전략을 추진하고 있다. 그 결과, 관련 산업의 증가와 발달 및 인터넷 사용 인구의 폭발적 증가를 가져왔다. 이로 인한 인터넷의 거품이 떨어지는 미래 사회에는 인터넷이 생활의 중심에 놓여 21세대로 올바른 생산수단이 될 것이다.

따라서, 인터넷을 이용한 원격제어의 연구는 필연적이라 할 수 있으며, 특히 인간이 외부로부터 받아들인 정보의 70% 이상을 담당하는 시각정보는 원격작업의 가장 중요한 환경인지 수단이며 원격작업의 필수 정보라 할 수 있다.

이 논문의 3차원 스테레오 입체 카메라 원격 제어 시스템은 그림 2에서 보는 바와 같이 구성되어있다. JAVA applet으로 이루어진 브라우저에서 스테레오 이미지의 주시각 제어 장치에 의해서 사용자가 이미지를 모니터링 할 수가 있다.

그림 2. 웹 기반의 3차원 스테레오 입체 카메라 모니터링 시스템의 구성

2.1.1 주시각 제어 입체 카메라

입체 영상은 하나의 카메라로 구성되는 2차원 평면 영상과는 달리 인간적인 요소를 반영하여 2대의 3차원 스테레오 입체 카메라를 사용하는 양안 거리와 유사한 65mm거리의 두고 설치하여 물체를 관측한다.

양안 입체 카메라는 좌, 우 영상센서에 맺는 수평시차를 '0'으로 제어 가능한 3차원 스테레오입체 카메라를 의미한다. 이는 관측 물체의 거리변화에 대응하여 입체 영상의 주시각과 초점 제어, 즉 주시각 제어가 가능함을 나타낸다.

양안 스테레오 입체 카메라의 주시각 제어 및 초점 제어에 관련된 연구는 M.Tanaka, N. Maru의 ZDF(Zero Disparity Filtering) 등이 있다.

또한, 관측 물체의 거리변화에 대응하여 입체영상의 주시각과 초점 제어가 가능한 스테레오 입체 카메라는 폭주선(crossed axes)과 수평선(horizontal
moving axes)이 있다.

평행식 카메라는 원격 관측용보다는 스테레오 입체 카메라를 이용한 거리 측정 등의 양용하게 쓰일 수 있으며, 그림 3과 같은 카메라에서 물체 A까지의 거리 \(P \)는

\[
\rho = \frac{f_s}{d_c}
\]

(1)

로 간단히 표현된다. 여기서 \(d_c = (dl + dr) \), \(f \)는 카메라의 초점거리, 그리고 \(s \)는 두 카메라 사이의 거리이다. 거리 계산 과정이 단순하여 임체 영상 카메라를 이용한 거리 측정 등이 유리하다.

그림 4. 폭주식 입체영상 촬영 카메라의 구조

(\(dl+dr \))의 값에 따라 달라지는 것을 의미하며, 그 형태는 카메라 중심으로 부채꼴 형태로 왜곡된다.

2.1.3 수평식 3차원 스테레오 입체 카메라의 구조

수평식 3차원 입체 카메라는 폭주식과 마찬가지로 카메라의 주시각 제어 기능이 첨가되어 있다. 수평식 스테레오 입체 카메라는 주시각을 제어하는 방법에 있어 폭주식이 카메라의 광축을 회전시키는 반면 카메라 렌즈를 CCD에 대하여 수평으로 이동하여 주시각을 조정하도록 설계되어 있다. 입체 영상 카메라의 좌우 렌즈를 CCD 면에 대하여 서로 대칭적으므로 수평 이동할 경우 CCD로 확대되는 좌우 영상 또한 대칭적으로 이동시키므로 입체영상의 시차를 조정할 수 있다. 그림 5는 수평식 입체영상 카메라의 구조를 보여준다.

그림 5. 3차원 수평식 스테레오 입체 카메라의 구조

\[
p = \frac{4D^2s f^2 + 2Dfs (dl + dr) + s^2 dl dr}{4Dsf^2 + (s^2 f - 4D^2 f)(dl + dr) - 4Dsdl dr}
\]

(2)

와 같이 표현된다. 식 (2)에서 \(s \)는 카메라 사이의 거리이며, \(f \)는 초점거리이다. 이 식은 폭주식 스테레오 입체 카메라가 거리 \(D \)의 위치에 주시각을 고정시키면 입체의 위치까지의 거리 \(P \)는 영상자치
그림에서 물체 \(O \)까지의 거리 \(P \)는
\[
P = \frac{As - 2h}{2h}
\]
(3)
로 표현된다. 여기서 \(s \)는 카메라 사이의 거리이며, \(h \)는 주시각 제어를 위한 카메라 렌즈의 수평 이동량을 의미한다. 이 식은 카메라로부터 수직 거리의 \(P \)에 있는 모든 물체까지의 거리는 동일함을 나타내며 평행식 스테레오 입체 카메라의 거리 측정 방식과 유사함을 알 수 있다. 특히 수평식 스테레오 입체 카메라를 이용한 긴급 관측 시 폭주식에 비하여 양상 해독이 훨씬 더 효과적하여 장시간의 입체 영상 관측에 유리한 장점을 보인다. 본 논문에서는 이러한 장점 때문에 수평식 스테레오 입체 스테레오 카메라를 이용하여 시스템을 구현하였다.

2.1.4 3차원 스테레오 입체 카메라의 비교

앞에서 살펴본 세 종류의 입체영상 카메라의 특성을 요약하면 표 1과 같다.

이들 세 카메라 중 원격 작업용으로 적합한 것은 주시각 제어가 가능한 폭주식과 수평식 두 종류이며, 입체영상의 관측 면에서 수평식 스테레오 입체 카메라가 우수함을 알 수 있다. 또한 소형화와 수중에서 관측이 가능하다는 이점도 있다.

3. 모니터링 및 통제 시스템 구성

그림 1에서 보는 바와 같이 시스템의 구축을 위하여 기본적으로 원격 조망을 감시하는 원격 시스템과 상황실에 설치되는 원격영상 감시 및 제어센터의 상황실과 원격의 각종 제어장치들을 영상전송 방식으로 연결한다.

원격감시는 3차원 스테레오 입체 카메라 서버를 통한 원격지의 상황이나 장치 작동상태를 상황실로부터 전송함으로써 감시가 가능하며, 원격제어는 해당 지역에 설치된 카메라의 모든 기능을 일반화 화상문자로 전달 채널을 이용하여 상황실의 웹 브라우저를 통하여 실시간으로 쉽게 제어가 가능하다.

3.1 클라이언트 시스템

클라이언트 시스템은 원격지 상황실에 존재하며 네트워크 연결관리자(Connection Manager)와 애플릿 관리자(Applet Manager), 이벤트 관리자(Event Manager)의 3개의 프로세스로 구성되어 있다. 그림 6은 클라이언트 시스템의 DFD를 보여준다.

상황실 관리자에 의해 이벤트가 발생하면 네트워크 연결관리자를 통해 원격지 제어부의 웹 카메라 서버 프로세스와 연결하고 주어진 이벤트는 이벤트 관리자에서 포장되어 다시 네트워크 연결관리자에 의해 서버 프로세스로 전송되며, 서버 프로세스에서 처리된 결과는 네트워크 연결관리자를 통해 애플릿 관리자로 전송되어 상황실 관리자에서 상황을 보여준다.

<table>
<thead>
<tr>
<th>특성</th>
<th>폭주식</th>
<th>수평식</th>
<th>평행식</th>
</tr>
</thead>
<tbody>
<tr>
<td>주시각 제어</td>
<td>가능</td>
<td>가능</td>
<td>불가능</td>
</tr>
<tr>
<td>영상 해독</td>
<td>클</td>
<td>적응</td>
<td>가능</td>
</tr>
<tr>
<td>주시각 및 초점 제어</td>
<td>별도 제어</td>
<td>동시제어</td>
<td>초점 제어</td>
</tr>
<tr>
<td>카메라와 소형화</td>
<td>재한</td>
<td>가능</td>
<td>가능</td>
</tr>
<tr>
<td>기능거리</td>
<td>focal distance</td>
<td>적합</td>
<td>감응</td>
</tr>
<tr>
<td>수중용</td>
<td>부적합</td>
<td>1m</td>
<td>1m</td>
</tr>
<tr>
<td>제작 나이도</td>
<td>낮음</td>
<td>높음</td>
<td>높음</td>
</tr>
</tbody>
</table>

표 1. 3차원 스테레오 입체 카메라의 비교
여러 이벤트들을 처리하는 이벤트 관리자, 결과관리자의 3개의 프로세스로 구성되어 있다. 그림 7은 서버 프로세스의 DFD를 나타낸다.

그림 7. 서버 프로세스의 DFD

3.3 클라이언트의 프로세스 구성

클라이언트 프로세스는 상황에 위치한 로봇 서버 시스템에서 수행된다. 월 브라우저로 원격서버와의 통신을 한다. 클라이언트 프로세스의 구성은 네트워크 연결 관리자와 네트워크 웹은 기반으로 구성된 에플리케이션 관리자와 이벤트 관리자로 이루어진다.

실시간 3차원 스테레오 입력 카메라의 원격 제어를 위한 인터페이스 구성은 표 2와 같이 구성되며 카메라 서버에서 웹 환경과 상황 및 클라이언트 사이의 이벤트 처리 및 영상 데이터 처리를 위하여 3개의 포트가 이용된다.

상황에서 카메라 서버 객실 환경의 3차원 스테레오 입력 카메라를 제어하기 위하여 발생할 수 있는 이벤트는 카메라 서버의 구동을 위한 제어 이벤트로 구성된다.

그리고, 제어 이벤트는 카메라 서버 객실 환경과 상황을 인터페이스하는 2개의 포트(A, B Port)를 통하여 이벤트가 카메라 서버 객실 환경으로 전달된다. 2개의 포트(A, B Port)를 통하여 입력되는 데이터 중에서 3차원 스테레오 입력 카메라의 초점 제어 및 주시각 제어를 위한 시그널을 포함하여 기본적인 월 카메라 서버의 제어 이벤트가 포함된 시그널을 전송하고 카메라 서버 객실 환경에서 3개의 포트(C Port)를 통하여 3차원 카메라 서버 시스템에서 입력된 영상데이터가 상황에 전달된다.

4. 시스템의 구현 및 시험

4.1 레고 RIS를 이용한 시스템 시험을 위한 공장 모형 제작

레고 RIS(Robotics Invention System)는 덴마크의 레고 사와 미국 MIT 빌더 레퍼토리 박사 연구팀이 개발한 레고 교육용 교재이다. 본 논문에서 레고 산업의 새 가지 공장 모형을 이러한 레고 RIS를 이용해 제작하였으며, 모형에서 사용되고 있는 센서와 액추에이터를 제어하기 위해 별도로 제작된 인터페이스 카드, 컨트롤 보드, 그리고 디바이스 드라이버를 사용하였다.

4.2 서버 모듈의 구현

그림 7에서 보는 바와 같이 세 개의 서버의 프로세스

<table>
<thead>
<tr>
<th>표 2. 월 카메라 제어 이벤트 구성 포트</th>
</tr>
</thead>
<tbody>
<tr>
<td><A port> 클라이언트에서 서버로 전송하는 시그널</td>
</tr>
<tr>
<td>8번 bit</td>
</tr>
<tr>
<td>Zoom In</td>
</tr>
</tbody>
</table>

| <B port> 클라이언트에서 서버로 전송하는 시그널 |
| 8번 bit | 7번 bit | 6번 bit | 5번 bit | 4번 bit | 3번 bit | 2번 bit | 1번 bit |
| Not Used | Focus | Conver-gence |

| <C port> 서버에서 사용되는 시그널 |
| 8번 bit | 7번 bit | 6번 bit | 5번 bit | 4번 bit | 3번 bit | 2번 bit | 1번 bit |
| Error | Stream |
스 모듈들은 분산 환경 지원을 위해 각각 서로 다른 컴퓨터에서 실행 시킨다. 각각의 서버 모듈들은 서버의 운영 환경을 확인 할 수 있는 콘솔 화면들을 가지고 있으며 관리자는 이러한 콘솔 장치를 통하여 서버들을 관리 할 수 있다. 각각의 서버 모듈들은 플랫폼 독립성을 위해 JAVA 언어로 제작되어 있으나, 컨트롤러 서버 쌍모들은 JAVA와 C언어로 구성되어 있다. 이러한 JAVA와 C의 연동을 위해 JNI(Java Native Interface)를 사용한다.

4.3 클라이언트 사용자 모듈의 구현

클라이언트 사용자 모듈은 웹으로 접근할 수 있는 데, 사용자 인증을 거친 홈페이지와 연동되어 있다. 클라이언트 사용자 모듈에서는 그림 8과 같은 원격 경로 감시 및 제어를 위한 화면을 Main GUI가 제공된다.

이 외에도 사용자 클라이언트 모듈에서는 디렉터리를 검색 서비스를 이용한 영상 재생 프로그램, 영상 전송 오류 시 그래프를 이용한 원격 감시 프로그램 등이 구성되어 있다.

그림 8. 화면 Main GUI

4.4 구성 결과 시험

컨테이너 모형은 신발 제조의 세 가지 공정인 설, 접착, 사정 공정을 각각 하나의 컨테이너 벨트에 축소해 놓았다. 모형에 사용되는 센서는 4개의 비트 센서와 2개의 회전 센서 그리고 하나의 온도 센서로 이루어져 있으며 통작을 담당하는 액체에터는 모두 모터로 총 7개가 사용되고 있다.

설정공정을 담당하는 1번 컨테이너로 Item이 들어온다. 입력확인 센서에서 총 두입 Item의 개수를 파악하고 불량 체크 센서 1을 통해 성형공정에서 발생하는 불량품을 확인한 후 불량품 제거 ARM 1으로 불량품을 제거한다. 1번 컨테이너를 통과한 Item은 직접공정을 담당하는 2번 컨테이너로 이동하게 된다. 직접공정에서는 운도를 체크한다. 운도 센서를 통해 운도가 너무 많이 올라가게 되면 운도 제어를 위한 FAN이 반응 하게 된다. 마지막으로 3번 컨테이너 후 3번 사정공정에서 불량 체크 센서 2를 통해 불량품을 다시 한번 겉내고 출력 확인 센서를 통해 완제품의 개수를 파악하는 것이다. 레고 모형에서는 빨래 센서를 이용하여 Item의 크기를 불량체크를 하게 했다. 그림 10은 신발 산업 각 공정에 대한 모형 구조도이다.

그림 9. 화면의 애플릿

다음은 각 공정을 테스트 및 분석 화면이다.

- 전체 공정: 그림 11은 원격지 공장 전체 공정의 완제품 및 불량품 개수, 불량품 발생율 등을 테이블 형태로 제공한다.
- 전체 공정 분석 그래프: 그림 12는 원격지 공장 전체 공정의 완제품, 불량품 개수 및 불량품 발생률 등을 막대와 선, 그래프로 제공한다.
5. 결론

본 논문에서는 Client/Server 기반의 실시간 원격 제어 및 감시 기술을 신발 산업 공정의 컨베이어에 의 적용해идент공장 자동화 방안을 제시하고 있다. 이러한 원격 감시 제어 시스템은 원격지에 연결된 컨베이어 시스템을 사항이에 위치한 클라이언트 시스템에서 웹 애플리케이션 사용자 인터페이스를 사용하여 원격 제어 및 모니터링 하는 형태를 가진다. 그리고 서버시스템을 통해 컨베이어 시스템을 통과하는 제품 들의 애플리케이션 네트워크에 대한 데이터베이스를 저장, 유지, 관리한다. 인터넷이 연결되어 있다면 어느 곳에서든지 제어 및 감시가 가능하기 때문에 국내 뿐 아니라 해외 공장에서도 가능하게 제어 할 수 있으며, 이러한 원격지 실시간 시스템은 원격지의 공정 제어 및 감시에 도움을 줄 뿐만 아니라, 산업체체를 미연에 발생할 수 있는 효과도 크다.

초고속 통신망에서의 분산 멀티미디어 기술을 사용한 자동화 기술은 원격제어 및 모니터링 뿐만 아니라 물류 및 동일 공정 시스템 등 다양한 분야의 기술에 적용을 시칠 수가 있다.

그러나 적용되는 분야가 다수구로, 많은 예산이 들어가 때문에 기업의 협조가 필요하다고 하였다. 정부의 산업용 원격 감시 및 제어 등 공장 자동화를 위한 연구에의 지원과 산학연 협동 연구를 통하여 생산공정에 관한 기술적인 협력을 도모하여 실제 산업체에 적용하게 되면 국가 경쟁력이 크게 향상 될 것이다.

참고 문헌

최 길 림
1989년 동아대학교 공과대학 전산공학과 공학사
1994년 부산수산대학교 산업대학원 이학석사
2003년 부산외국어대학교 컴퓨터전자공학부 박사과정 수료
1996년~현재 경남정보대학 컴퓨터정보계열 부교수

김 태 균
1985년 서울대학교 전산학과 이학사
1987년 서울대학교 전산학과 이학석사
1995년 서울대학교 전산학과 이학박사
1988년~현재 부산외국어대학교 컴퓨터공학과 교수

김 삼 린
1974년 동아대학교 공과대학 전자공학과 공학사
1986년 동아대학교 대학원 전자공학과 공학석사
2004년 부산외국어대학교 컴퓨터전자공학부 공학박사
2011년~현재 경남정보대학 컴퓨터정보계열 교수

이 정 배
1981년 2월 경북대학교 전자공학과 전자계산기 전공 공학사
1983년 2월 한국과학기술원 전산학과 공학석사
1982년 2월~1991년 2월 한국전자통신연구원 전산연구원
1991년 3월~2002년 2월 부산외국어대학교 컴퓨터공학부 교수
2002년 3월~현재 전문대학교 컴퓨터정보학부 부교수

김 씽욱
1974년 동아대학교 공과대학 전자공학과 공학사
1986년 동아대학교 대학원 전자공학과 공학석사
2004년 부산외국어대학교 컴퓨터전자공학부 공학박사
2011년~현재 경남정보대학 컴퓨터정보계열 교수

관심분야: 인터넷 프로그래밍, Mobile IP, MIS, e-Learning