DOI QR코드

DOI QR Code

Numerical Analysis of OLED Luminescence Efficiency by Hole Transport Layer Change

유기발광 소자의 수송층 두께 변화에 따른 수치적 해석

  • 이정호 (홍익대학교 전자공학과)
  • Published : 2004.12.01

Abstract

The OLED research is gone for two directions. One is material development research, and another one is structural improvement part. All two are thing to heighten luminescence efficiency of OLED. n other to improve luminescence efficiency of OLED Electron - hole pairs must consist much more in the device Their profiles are sensitive to mobility velocity of electrons and holes. In this paper, we demonstrate the difference of velocity between hole and electron by experiments, and compare with a data of simulation and experiment changing hole carrier transport layer thickness, so we get the optimal we improve luminescence efficiency. We suggest improving the efficiency of OLEDS would be to balance the injection of electrons and holes into light emission layer of the device. And, we improve understanding of the various luminescence efficiency through experiments and numerical analysis of luminescence efficiency in variable hole carrier transport layer's thickness.

Keywords

References

  1. B. K. Crone, P. S. Davids, I. H. Cambell, and D. L. Smith, 'Device model investi-gation of single layer organic light emitting diodes', J. Appl, Phys., Vol. 87, No.2, p. 833, 1998
  2. C. D. J. Blades and Alison B Walker, 'Si-mulation of Organic Light Emitting Diodes', Synthetic Metals 111-112, p. 335, 2002 https://doi.org/10.1016/S0379-6779(99)00359-8
  3. Simon J. Martin, J. M. Lupton, I. D. W. Samuel, and Alison B Walker, 'Modelling temperature-dependent current-voltage cha-racteristics of an MEH-PPV organic light emitting device', J. Phys., Vol. 14, No. 42, p. 9925, 2002
  4. G. G. Malliaras and J. G. Scott, 'Roles of injection and mobility in organic light emitting diodes', Appl. Phys., Vol. 83, No. 10, p. 5399, 1998 https://doi.org/10.1063/1.367369
  5. C. W. Tang and S. A. Vanslyke, 'Organic electroluminescent diodes', Appl. phys, Lett., Vol. 51, No. 12, p. 913, 1987 https://doi.org/10.1063/1.98799
  6. E. M. Conwell and M. W. Wu. 'Contact injection into polymer light-emitting diodes', Appl. phys. Lett., Vol. 70, No. 14, p. 1867, 1989 https://doi.org/10.1063/1.118716
  7. P. S. Davids, Sh. M. Kogan. I. D. Parker, and D. L. Smith, 'Charge injection in organic light-emitting diodes: Tunneling into low mobility materials', Appl, phys. Lett., Vol. 69, No. 15, p. 2270, 1996 https://doi.org/10.1063/1.117530
  8. D. Braun and A. J. Heeger, 'Visible light emission from semiconducting polymer diodes', Appl, phys. Lett., Vol. 58, No. 18, p. 1982, 1991 https://doi.org/10.1063/1.105039
  9. I. D. Parker, 'Carrier tunneling and device characteristics in polymer light-emitting diodes', J. Appl. phys., Vol. 75, No.3, p. 1656, 1994 https://doi.org/10.1063/1.356350
  10. 최종선, 박재훈, 'Organic Thin Film Tran-sistor의 기술현황', 전기전자재료학회논문지, 17권, 7호, p. 5, 2004
  11. 장웅상, 최준환, 윤호규, 이주원, 주병권, 김재경, '유기 박막트랜지스터Organic TFT)의 유기 활성층 기술동향', 전기전자재료학회논문지, 17권, 8호, p.3, 2004
  12. S. M. Sze, 'New Jersey. Physics of Semiconductor Devices 2th', 1984
  13. J. H. Lee, N. G. Park, Y. S. Kim, C. H. Suh, J. H. Shim, and Y. K. Kim, 'Steady-state Analysis for Contact Barrier Effects in Metal/Organic/Metal Structure using Nu-merical Bipolar Transport Simulation', Current. Appl. Phys., C. Appl. phys, (in press), 2003