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Optical Flow for Motion Images with Large
Displacement by Functional Expansion

Jin-Woo Kim'

ABSTRACT

One of the representative methods of optical flow is a gradient method which estimates the movement
of an object based on the differential of image brightness. However, the method is ineffective for large
displacement of the object and many improved methods have been proposed to copy with such limitations.
One of these improved techniques is the multigrid processing, which is used in many optical flow
algorithms. As an alternative novel technique we have been proposing an orthogonal functional expansion
method, where whole displacements are expanded from low frequency terms. This method is expected
to be applicable to flow estimation with large displacement and deformation including expansion and
contraction, which are difficult to cope with by conventional optical flow methods. In the orthogonal
functional expansion method, the apparent displacement field is calculated iteratively by a projection
method which utilizes derivatives of the invariant constraint equations of brightness constancy. One feature
of this method is that differentiation of the input image is not necessary, thereby reducing sensitivity
to noise. In this paper, we apply our method to several real images in which the objects undergo large
displacement and/or deformation including expansion. We demonstrate the effectiveness of the orthogonal
functional expansion method by comparing with conventional methods including our optimally scaled

multigrid optical flow algorithm.

Keywords: Optical flow, orthogonal functional expansion, multigrid, deformation

1. INTRODUCTION

Methods for estimation of velocity field (optical
flow) from motion images have been proposed by
many researchers. They are classified mainly into
two categories ; gradient method[1-5] and correlation
method[6]. The gradient method assumes that
brightness of a tracked point on a target object is
not changed during motion. Under this assumption,
the method uses the differential continuity equation
to calculate small displacement in direction of the
brightness gradient. Then, component of the dis-
placement field perpendicular to the brightness
gradient is determined by regularization utilizing
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a smoothness constraint(7,8]. However, the gradient
method has a problem that the displacement should
be smaller than a scale length of the brightness
gradient. Therefore, the estimation error becomes
large for large displacements. The multigrid (multi-
resolution) method(9-16] is a powerful counter
measure to cope with this problem. For example,
S.Ghosal et al[17] proposed a method of combining
the gradient method with an isotropic smoothness
constraints and the multigrid method. However,
the multigrid method has a problem with how well
the velocity of the higher resolution level is
estimated from the lower resolution level. In the
standard multigrid method, the finer resolution
level velocity is estimated from the coarser level
using a fixed scale factor. The optimally scaled
multigrid method proposed by us generates the
higher resolution level image using the estimated

flow with various scales and determine the in-
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terlevel scale under the criterion of least squared
error between the real second image and the
estimated second image. By this we can calculate
a flow for a large displacement. However, there is
a tendency that the accuracy is decreased for large
displacement or motion with rotation. On the other
hand, though the correlation method can measure
even the large displacement, it requires the iden-
tification of the pattern. Further, when there is a
deformation of such as rotation or enlargement, its
application becomes difficult or its coping with
becomes complicated. Moreover, to avoid the dif-
ferentiation of noisy images, SSD (sum-of-squared
difference) method has been proposed[18]. This is
a region-based matching method, and this has a
characteristic of correlation method to some extent
as well as the differential techniques(19]. Another
constraints of epipolar[20}, qualitative[21], and
stochastic[22,23] etc, are also employed for ob-
taining correspondences or tracking in image se-
quence.

Against this, we proposed an orthogonal functional
expansion method (OFEM) which is quite different
from the conventional approaches. The constraint
used is the integral transform value of image
brightness being constant. The OFEM is a top
down approach expanding the motion of the whole
image in turn from a low frequency. Thus the
OFEM has a feature in the point that the motion
itself is divided naturally into multiscales using the
weight functions. It uses a linealized integral
transform equation as a constraint, and the motion
is obtained by using projection method onto the
convex set (pocs). Though the method is expected
so that it is also applicable to the case where the
object is largely deformed including large dis-
placement, deformation, and rotation, with keeping
its brightness.

In this paper, applying our OFEM to real images
with large translation, enlargement, and rotation,
comparing with Horn & Schunck method, multigrid
method, and optimally scaled multigrid method, we

show that the orthogonal functional expansion
method can obtain good flow even for natural
images where the constraint of the integral value
of the brightness being constant is not necessarily
guaranteed.

The organization of this paper is as follows :
In Section.2, the outline of the OFEM is described.
In Section.3, some experimental results are shown.
In Section.4, some discussions and conclusions are

given.

2. ORTHOGONAL FUNCTIONAL EXPAN-
SION METHOD

If we use the brightness gradient (differentiation
of image) as in the gradient method, there happens
the evil effect of weekness to noise, or inability to
obtain the large displacement, etc. This means that
the estimation results of the optical flow are largely
affected by the imaging condition. Ideally it is
desirable that the system is robust as not disturbed
by such external factor. The OFEM based on the
constraint of invariant integral value does not need
the differentiation of image, and can overcome such
defects of the gradient method. In OFEM the error
norm is minimized at each spatial frequency as the
constraint, and the motion is calculated by the
projection method onto the convex set (pocs ).

2.1 Fundamental Constraint Equation
When the first image o;( 7; ) is changed to the
second image p,( 7, ), the motion can be regarded

as the coordinate transformation 7= 7+ s( 7 ),

and the image brightness is related by the following

equation :
o mY=p( 7)) (1)

In this case, we have the following two equations
which should become equal :

L= fimgzg"( 73 )oo( 7y )d 7
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=H,(s) = fimgljD( gl nt+s)o( 7 )dn
in=1,2,+++,N 2

where mgl is a domain to be processed, and #mg2

is a range corresponding to it. The area correction

factor Jp( 7, ) is a determinant of the Jacobian

matrix J ,',’( 7 )

_ 872, _ as;‘( T])
5= ary =dy or
yi,7=1,2, - + -

Eq.(2) is the fundamental integral constraint
equation of OFEM, and each term expresses the
functional expansion coefficient of the brightness

distribution (p;( #,) or py{ 7, )) by an arbitrary
function g,( r; ). That is, it expresses a necessary
condition that the expansion coefficient by g,.( 75 )
of the image p5( 7; ) after the displacement should
be equal to the expansion -coefficient with
g.( 7,+ s ) spacially deformed by the displacement

s of the image p,( 7, ) before the displacement.

In this method, we do not make coincide directly
the displaced first image with the second image,

but coincide the coefficients by g,(7r ): n=
1,2 - -

noisy image, we can do with differentiating g,( 7 )

By this, instead of differentiating the

beforehand by selecting differentiable cardinal
functions {g,( 7 )} such as a set of orthogonal

functions. This becomes the biggest merit comparing
with the gradient method. Further, the OFEM can
include naturally the multigrid method which is
effective to the large displacement of the object.

2.2 Displacement Estimation by Norm Mini-
mization
From Eq.(2), we have I,= H,. Assume now the
displacement field s( 7, ) is shifted by unknown
quantity &s( 7 ) from the known quantity

so( 7, ), and the corresponding each quantity is

also divided into the known quantity and the
unknown quantity as follows :
s = §;+0s
Hs) = H( s)+¢H,
Jl n) = L rn)+ol r)
By dividing the each quantity into the known term

and the unknown term, and expanding H,( s ) in

Eq.(2) by the first-order Taylor series, we have

the following linearized Integral constraint
equation :
A‘Hn = Hn( S )-Hn( s[))

Il

fimgl[ e )[ 08 4( :;1: Sg) Ss

+g. nt $0)8 Joy( 7 )d ny (3)

Here we define norms in the scalar field a(r ) and

the two-dimensicnal field (a(7 ),5(7 )) by the

following equations :

lla( » )i ?= fp( r Na(r )%dr (4)
(a7 ), 8(r DI 2=1la( r I Z+116( 7 H1? (5)
Now, we define a cost function as follows :

C = liosll*+alanl
= [ 7 e s A e s, 2 1871 Dd 7, (6)

i

where, 8s=(8 s,,8s, ) and a? is a non-nega-
tive weighting factor. By minimizing this cost

function, the unknown displacement &s and &/ are
following Eq.(7) and (8) :

6311( 71) =

L= H s)]
A I 7y g, 1P Hle

IIZ-]Ogns( rt+ SO) (7)

6.[n( T ) -

[In—Hn( SOL‘L
A7 )g,, IP+1lg

E g. 71+ s0) (8

where, £,,=(& . &), derivative of g, by s.

The estimated displacement and area correction
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factor can be computed by iterative projections
onto the solution space of each linealized integral
constraint equation. This technique is commonly
referred to as convex projections or projections
onto convex sets {(pocs). We can see that the
unknown displacement dJs( »; ) obtained by g,
turns to the direction of the gradient of the

weighting function g,. The displacement s, ( 7, )
and area correction factor J,( 7, ) are updated at

each projection as follows :

So( 7’1)<:S()( 7’1)+6S( 7’1) (9
W) S r)+87.( n) (10)

3. EXPERIMENTAL RESULTS

Seven kinds of experiments have been per-
formed including displacement with enlargement,
shift, and rotation. The following orthogonal func-
tions were tested as the integral constraint :

(1) Trigonometric function sin{&x) and cos(gx) :
There arises the discontinuity at both end
of the cos term, and it caused a large error
in the expansion.

2

~

Triangle-shaped Walsh function :

In order to make differentiable, though we

modified the Walsh function to triangle

shape, the error was large.

(3) Adjoint Hermit function[24] :
It becomes a sum of the normal distribution
function. Though at the central part of each
function, the accuracy of the differentiation
is high, at the both ends of the function it
takes small values and the merit of the
functional expansion becomes decreased.

(4) Trigonometric function cos{kx)cos(gy) and

sin(kx)sin(gy) :

The drawbacks of (1)-(3) were removed.

Thus, since the results of (4) were the best, we
only describe about (4) in the followings using
FFT : The evaluation of the OFEM was performed
by comparing it with Horn and Shunck method,

multigrid method, and optimally scaled multigrid
method. The comparison of the four methods are
carried out mainly by evaluating the similarities
between the original second image and an estimated
second image which is generated using the original
first image and the optical flow obtained by each
method. Lin et al.[25] evaluated nine kinds of image
interpolation methods by RMS errors of the
several image pairs and several optical flow esti-
mation methods. In this paper, though we estimated
the second image using only bilinear interpolation,
we think from the comparisons of the results of
the calculated flows that the general tendency of
the results using another interpolation methods
will not differ so much from our evaluation results.

The obtained optical flows are shown with
average of nine pixels at intervals of three pixels,
and with the velocity scale of 1.0. Two evaluation
criterions of normalized RMS (NREMS) error and
correlation value (COR) are adopted. These evalu-
ation values are shown in (11) and (12).

NRMS error=
= Z
\/ Zny(gz(:x;:Z(x 5)2 (x, ) < 100(%) (11
COR=
Sl (1,9) ~ ol Py (2,3~ 2] (12)

VSl oy, 9) — p1N a2l polx)— 53l

where o=[2Zx2y 0, (x,3)] | MxN, p,={TxZy

02 (6,9)] | MXN. 0, (%, and py(x,y) are
the original second image and the estimated second
image. Especially, for flow of rotating images
which are the feature of this paper, NRMS error
and correlation value between the original second
image and the estimated second image vs. rotation
angle are evaluated in this paper. Further, in the
cases of shift, and shift with enlargement, with
selecting a moving object manually, we tried the
pattern search based on the correlation method for
comparisons. Relative computation time of Horn
and Shunck, multigrid, and scale optimized multigrid
methods were 1 (typically 30 second by WS for
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128 X128 images), 1.15, 1.7, 4.3, respectively.

3.1 Shift

(0 TURTLE

Original image pair of the first and the second
images of Turtle used in the experiment are shown
in Fig. 1, where the object is displaced right hand
side by 18 pixels. The size of the whole image is
128x128 and object size is 71X 38.

Optical flow obtained by applying the four
methods to Fig. 1 is shown in Fig. 2 (a)-(d). We
can see that in the case of Horn & Schunck
method, the optical flow is not detected at all. In
the case of the multigrid method, flow error is
large. On the other hand, in the case of optimally
scaled multigrid method, the result is rather
improved than the cases of H&S and multigrid
method. In the case of OFEM, the result is much

improved.

[0 KOALA

In Koala (Fig. 3) the object is moved left up
direction along x-axis and y-axis by 31 and 33 pixels,
respectively. The object size is 26 X38. Fig. 4 (a)-(d)
are optical flows obtained by applying the four
methods to the first and the second images. We
can see that the flow is hardly estimated in Fig.
4 (a)-(c). In OFEM, optical flow could be calculated
to some extent as a whole.

In Table 1, RMS errors and correlation values
are shown. Also in this experiment, there are large
errors of flows in the Horn & Schunck method,
the multigrid method, and the optimaily scaled
multigrid method. This is because the displacement
is too large to be calculated correctly by applying
the Horn & Schunck method, the multigrid method,
or the optimally scaled multigrid method. However,
in the OFEM case, the whole tendency of the flow
could be estimated well than the other methods,
and concerning the RMS error and correlation
value the OFEM is also superior to the other

methods.

(a) First image (b) Second image
Fig. 1. Selected frames of the experimented Turtle
image sequence.

(c) (d)

Fig. 2. Estimated fiow of Turtle sequence using
four optical flow methods. (a)Horn &
Schunck’s method, (b)standard multigrid
method, (c)scaled multigrid method, (d)
OFEM.

(a) First image (b) Second image
Fig. 3. Selected frames of the experimented Koala
image sequence.

3.2 Rotation : Rubic Cube and Hamburg Taxi

The optical flow with rotation is not easy to
obtain since it includes complex factors. Rubic cube

images (No. 4 and No. 19) are shown in Fig. 5, whose
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() (d)

Fig. 4. Estimated flow of Koala sequence using
four optical flow methods. (a)Horn &
Schunck’s method, (b)standard multigrid
method, (¢)scaled multigrid method, (d}
OFEM.

Table 1. Comparison of NRMS error’s and co-
rrelations between original and estimated
second image using estimated flows.

Comparison of Sample images

the methods Turtle | Koala | Jan | Robot

Hom & NRMSE 33778 | 34871 22.022| 35524
Schunck | Correlation | 0.660] 0818] 0705 0853

Standard | NRMSE 238741 346411 21.977 35411
multi-grid | Correlation 0.793| 0821 0709 08A

Scaled NRMSE 22.538) 34.423| 20932| 35.355
multi-grid | Correlation 0806 0.824| 0739] 0855

NRMSE | 14594{ 20.904| 18574| 22.113

OFEM Correlation | 0.909| 0937 0863 0944

(a) First image (No.4) (b) Second image (No.19)

Fig. 5. Rotating Rubic cube sequence.

image sizes are both 128X 128, Maximum dis-
placement accompanying the rotation in this case
is about two pixels. Making the No. 4 image the
base first image, the rotation amount becomes
large according to increasing the image No. of the
second image. No. 10 and No. 15 of Hamburg Taxi
are shown in Fig. 6 whose sizes are both 64 X64.
We make the No. 10 the base first image. Hamburg
Taxi has motions of about four pixels left and three
pixels up at the center, and about 2.5 degrees of
right-handed rotation.

Fig. 7 (a)-(d) and Fig. 8 (a)-(d) are optical flows
obtained by applying the four methods to the first
and the second images of Fig. 5 and Fig. 6,
respectively. The estimated second images generated
with obtained optical flow and the first image are
shown in Fig. 9 (a)-(d) and Fig. 10 (a)-(b).

In Fig. 11 and Fig. 12, the correlation values and
the RMS errors are shown between the original
second image and the estimated second image. In
the case of the Rubic Cube, Horn & Schunck
method except, multigrid method, and optimally
scaled multigrid method could estimate the flow
well, there are places where the flow could not be
estimated around the comners of the Rubic Cube.
This is because around the corner since not only
the brightness changes rapidly, but also the dis-
placement is the largest and relative motions with
the background are largely included, and the flow
estimation is difficult from the beginning. On the
other hand, by the OFEM the result is fairly im-
proved and flow is almost estimated (Fig. 7(d)). In
case of the Hamburg Taxi, the flow is not detected
at some places by the Horn & Schunck method
(Fig. 8(a)). Though in cases of the multigrid method
and optimally scaled multigrid method the result
is fairly improved than the Horm & Schunck
method, error is seen around the taxi(Fig. 8(b), (c)).
Contrary to this, in the case of OFEM though the
error is still seen a little around the taxi, we can
see that the result is further improved as a whole
(Fig. 8(d)). Calculated results of the correlation
values and the NRAMS error is shown in Fig. 11
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(a) First image (No.10) (b) Second image (No.15)
Fig. 6. Rotating Hamburg Taxi sequence.

VOL. 7. NO. 12, DECEMBER 2004

(a) G)

(a) (b)

(©) (d)

Fig. 7. Estimated flow of rotating Rubic cube se-
quence using four optical flow methods.
(a)Horn & Schunck’s method, (b)standard
multigrid method, (c)scaled multigrid
method, (d)OFEM.

and Fig. 12. We can see that in cases of both
images the larger the rotation angle is, remarkably
more improved the detection accuracy of the OFEM
is than the other three methods. Also in cases of
the shift, and the enlarged shift, the larger the
displacement is, the superiority of the OFEM
becomes more dominant.

In[25], Horn & Schunck method (H&S), Lucas
and Kanade method (L&K), Singh, and Fleet and
Jepson method (F& J) are compared when bilinear
and more smooth interpolation methods are used
in the generation of the second images including
the Rubic Cube and Hamburg Taxi. Though since

besides the No's of the images are not shown in

(c) (d)

Fig. 8. Estimated flow of rotating Hamburg
Taxi seaquence using four optical flow
methods. (a)Horn & Schunck’s method,
(b)standard multigrid method, (¢)scaled
multigrid method, (d)OFEM.

© @

Fig. 9. Estimated images of rotating Rubic cube
sequence using four optical flow methods.
(a)Horn & Schunck’s method, (b)standard
multigrid method, (c)scaled multigrid
method, (d)OFEM.

the paper, the image window sizes are different,
it is difficult to compare directly, by making the
H&S standard we compare relatively our results
and of the above four methods including with their
different parameters. In[25] the L& K method has
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@) o b)

(c) (d)

Fig. 10. Estimated images of rotating Hamburg
Taxi sequence using four optical flow
methods. (a)Horn & Schunck’s method,
(b)standard multigrid method, (c)scaled
multigrid method, (d)OFEM.
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(a) correlation (b) NRMS error

Fig. 11. Comparisons of the original and estima-
ted second images for Rubic cube se-
quence using correlation and NRMS
error.
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(b) NRMS error

Fig. 12. Comparisons of the original and es-
timated second images for Hamburg
Taxi sequence using correlation and
NRMS error.

(a) correlation

the least errors among the four methods, which are
41% of H&S in Rubic Cube. The OFEM is equal
to it at the worst in any frame, and generally it's
error is far less than others. Since practically we

are dealing with only areas with large displace-

ment, this figure will become different when we
deal with whole images including areas with small
displacement. At least, however, we can say that
in areas with large displacement the OFEM works

effectively.

3.3 Displacement with Enlargement: Jan
and Robot

Original image pairs of the first and the second
images of Jan and Robot used in the experiment
are shown in Fig. 13 and 14, whose sizes are both
128 128. The object sizes in the first and the
second images of Jan (Fig. 13) are 20x 30, 25X 35,
respectively, and the displaced distances are both
40 pixels, in x-direction and y-direction. The
object sizes in the first and the second images of
Robot (Fig. 14) are 28X25, 49X 46, respectively,
and the displaced distances are 56 pixels and 12
pixels, in x—direction and y-direction, respectively.
Optical flows obtained by applying the four
methods to Fig. 13 and 14 are shown in Fig. 15
(a)-(d) and Fig. 16 (a)-(d), respectively.

In Table 1, NERMS errors and correlation values
between the original second image and the estimated

(b) Second image

(a) First image

Fig. 13. Selected frames of the experimented
Jan image sequence.

il

(b) Second image

(a) First image

Fig. 14. Selected frames of the experimented
Robot image sequence.
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(a) (b)

(c)

Fig. 15. Estimated flow of Jan sequence using
four optical flow methods. (a)Horn &
Schunck’s method, (b)standard mul-
tigrid method, (c)scaled multigrid
method, (d)OFEM.

(a) (b)

(c) (d)

Fig. 16. Estimated flow of Robot sequence
using four optical flow methods. (a)
Horn & Schunck’s method, (b)standard
multigrid method, (c)scaled multigrid
method, (d)OFEM.

second image are shown. We can see that in the
cases of the gradient method, multigrid method and

optimally scaled miultiresolution method, the

optical flows are hardly detected. Contrary to this,
in the case of OFEM, relatively good results are
obtained including quantitative values. However,
though the flow directions are obtained well on the
whole, their sizes are not enough, and it is seen
that to compensate this the tendency that pixel
values are “gathered up from circumference” or
“dispersed to circumference” is seen.

3.4 Comparison with Correlation Method

There are two approaches in correlation method
which is a powerful technique to obtain the optical
flow. One is obtaining small displacement with
high precision, and the other is obtaining large
motion area. In the latter, there are also two
approaches of directly matching partial images and
block matching under parameterized translation
[26]. To cope with various types of motion, we
tested only the former one. To confirm the detect
ability of the correlation method, we picked out
manually the moving objects as template patterns
from Jan (Fig. 13), Robot (Fig. 14), Turtle (Fig. 1)
and Koala (Fig. 3), Rubic Cube (Fig. 5) whose
object is shifted enlarged or rotated, and made
simple pattern searches by correlation method. The
templates are shown in Fig. 17, respectively.

In Table 2, the maximum normalized correlation
values and estimated displaced location which is
the location showing the maximum normalized
correlation value are shown for these cases. We

can see that when the background is simple and

Table 2. Template image position search by co-
rrelation method.

correlation
at correct
correct {estimated| position

Position Maximum

correlation

Sample| Template
images { image size

Jan | 25%35 [(61,51)| (52,51) | 0.721 0.820
Robot | 51x44 [(1868)( (19,72) | 0.379 0.530
Turtle| 71x38 |(37,71)| (37,71) | 0.939 0.939

Koala| 26%X38 |(4817)| (4818) | 0.756 0.787
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(©

(d) (e)

Fig. 17. Selected template images. (a)Jan, (b)
Robot, (c)Turtle, (d)Koala, (e)Rubic

cube.

include only the shift as in the Turtle or Jan, the
estimation of the displacement is easy. However,
when the background is complicated and besides
the object includes enlargement as in the Robot,
error is caused as seen in Table 2 such that the
normalized correlation value is 0.379 for the true
displaced location of (18, 68} in contrast to that the
maximum normalized correlation value is 0.530 for
errorneously detected displaced location of (19, 72).
Further if the deformation includes the 3 dimen-
sional rotation as in the Rubic Cube or if the shape
of the object is not known beforehand, it may be
more difficult to detect the flow correctly. Thus,
the correlation method may be effective for the
simple displacement though large, or one able to
be represented by such combinations. On the other
hand, OFEM is effective to the large deformation
where such assumption does not necessarily be
applicable. We can regard these are a comple-

mentary relation,

4. CONCLUSION

By the gradient method which is the present
representative optical flow method, we cannot
determine the large displacement. As a method of
resolving this problem we have been proposing a
novel orthogonal functional expansion method
(OFEM) which bases on a constraint of weighted

integral of the image brightness being constant,

and determines an optical flow with the pocs
method by a top-down manner. By this, instead
of differentiating the noisy image, we can do with
differentiating the expansion function beforehand
by selecting set of differentiable orthogonal functions.
This becomes the biggest merit comparing with
the gradient method. Further, the OFEM can
include naturally the multigrid method which is
effective to the large displacement of the object.

In this paper, especially using images with large
displacement, rotation, or enlargement, whose
optical flow are difficult to obtain by previous
methods, we have evaluated the OFEM by com-
paring with previous methods qualitatively and
quantitatively. In order to evaluate the performance
of the OFEM purely, some heuristic techniques to
enhance the performance such as region/edge
detection, unisotropic evaluation, or some confidence
measure are not used here. Qualitatively, there still
happens to cause errors around the object for the
large deformations including rotation, and further
such tendency is observed that enough amount of
the displacement is not obtained and the shortage
of the image brightness integration value is “gather
up from the circumference” or “dispersed to the
circumference.” However, by the OFEM it is
possible to obtain better optical flows as a whole.
It's a common problem in optical flow algorithms
that the flow size is fairly shorter than correct one
for large displacement which is several times of
object size. Generally speaking, the matching
method is effective even for such large displace-
ment. However, when motion is not simple, or the
object rough shape is not known beforehand, it is
not so easy to apply the matching method. In such
cases it has been confirmed quantitatively that the
OFEM can obtain better optical flow than the
conventional methods for the various kinds of large
displacements including rotation and enlargement.
It can also be said that for small displacement,
OFEM does not inferior to the conventional methods.
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