JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 7, NO. 12, DECEMBER 2004(pp. 1700-1707)

Combination Algorithm of a Material for
Marble Solid Effects

Tae-Jdin Park*, Man-Gon Parkﬁ

ABSTRACT

Nowaday, market size of digital image in world around is looks to rapidly growth. For this, Texture
mapping has traditionally been used to add realism to computer graphics images. Therefore to make
our image realistic, we need to give the various kind of objects material parameter and environment
lighting. To present the completed marble we use passing back algorithm and combination with channel
of a material. In experimental result of this paper that application by passing back algorithm and varying
the parameter such as scale, period, distortion, octaves of noise make showing the superiority of optimized
rendering of spheres and perfect another marble effects.

Keywords : Solid marble texture, perlin noise, turbulence function, intersection 3D sphere, passing back

algorithm

1. INSTRUCTION

Nowaday, market size of digital image in world
around is looks to rapidly growth. For this, Texture
mapping has traditionally been used to add realism
to computer graphics images. Texture mapping
[1,4] is a powerful technique for adding realism to
a computer-generated scene. Therefore we used
Perlin Noise to develop procedural marble textures
for any point in 3D space. The idea of a procedural
texture map 1s simply that for any point in 3D
space, you get back a number (noise function)
between -1 and 1. From here, we used the sin
function along with parameter to control the
octaves, frequency, scale, and distortion of noise

function.

% Corresponding Author : Tae-Jin Park, Address:
(608-737) 599-1 Daeyon-dong, Nam-gu, Busan, Korea,
TEL : +82-51-620-6391, FAX : +82-51-628-6155
E-mail : csptj@maill.pknu.ac.kr
Receipt date: Oct. 7, 2004, Approval date: Dec. 16, 2004
* Division of Computers & Multimedia Engineering,
Pukyong Nat'l Univ.
** Division of Computers & Multimedia Engineering,
Pukyong Nat'l Univ.
(E-mail : mpark@pknu.ac.kr)

In this paper application by passing back algorithm
and varying the parameter such as a scale, period,
distortion, octaves of noise was created in order
to optimized rendering of spheres and different
marble effects. Basically, if we can cut down the
amount of intersection tests per ray then we could
dramatically increase the speed of rendering.

2. BACKGROUND AND PREVIOUS WORK

2.1 Dimensional

A common technique is to create 1/fn noise
which is known to occur often in natural processes.
An approximation to this is to add suitably scaled
harmonics of this basic noise function. For the rest
of this discussion the Perlin noise functions[2] will
be referred to as N(x) of variable x which may a
vector in 1, 2, 3 or higher dimension. This function
will return a real (scalar) value. A harmonic will
be N (b x) where ‘b’ is some positive number
greater than 1, most commonly it will be power
of 2. While the N() functions can be used by
themselves, a more common approach is to create

a weighted sum of a number of harmonics of these

Combination Algorithm of a Material for Marble Solid Effects 1701

functions. These will be referred to as N(x) and

can be defined as

=1 n{bfx}
1
a

1=

n(n=

Where N is typically between 6 and 10. The
parameter ‘a’ controls how rough the final N()
function will be. Small values of ‘a’, give very
rough functions, larger values give smoother
functions. While this is the standard form in
practice it isn't uncommon for the terms a; and b;

to be replaced by arbitrary values for each i.

2.2 Solid Noise

To design n, just calling a random number for
every point wouldn't be appropriate because it
would just be like “white noise” in TV static. We
would like to make it smoother without losing the
random quality. One possibility would be to blur
white noise, but there is no practical implemen-
tation of this that can be evaluated in isolation.
Another possibility would be to make a big lattice
with a stored random number at every Cartesian
lattice point (x, y, and z all integers) and interpolate
these random points for points between lattice
nodes. This would make lattice too obvious, and
you would need too much memory.

Perlin introduced a modification of this basic
idea that both hides the lattice and requires little
memory. His function n (p) is usually called Perlin
noise. Perlin used a variety of tricks to improve
this basic lattice technique[2,3]. First, he placed
randomly-chosen vectors at the lattice points and
used dot products to move the extrema off the
lattice. Second, he used higher-order interpolation
rather than trilinear to hide derivative artifacts.
Finally, he used hashing so that he could use a
small table for all the lattice points. Here is his
basic method :

| 1oyl ot 1
n(x,y,2) = 1_22 ,‘i; kgﬂw (x—i,y—j2—h)

where (x,y,z) are the Cartesian coordinates of x, and

2 n(u, v, w) = w(w) () (W) (g 4. (u, v, W),

and w(?) is the cubic weighting functions :

(6148 + 15144 —1014°% + 1if 14<1,
olf) = [0 otherwise.

The final piece is that g is a vector for the

lattice point (x,y,z) = (i,j,k). Since we want any

potential 1,),k, we use a pseudorandom table :

& i, k= GO(i+ 0+ 0(H)))

where G is a precomputed array of N vectors,
and @(7) = P{i mod NI,

P is an array of length N containing a permutation
of the integers O through N-1.

Perlin suggests N=16 and the following vector :

(1,L,0 (1,01 (-1, 1,0 (-1,0, 1
(1,-1,00 (1, 0-1) (-1,-1, 0) (~1,0-1)
0,15, 1,1,0 (0-1,1 (11,0
0. 1-1) (0-1. 1) (0-1-1) (0-1-1)

The first twelve vectors are from the origin to
the twelve edges of a cube, and the next four are
padding so that mod can be efficient. Because solid
noise can be positive or negative, it must be
transformed before being converted to a color.

The dark curves are where the original noise
function went from positive to negative. Since
noise varies from -1 to 1, a smoother image can
be achieved by using (n(p)+1)/2 for color. However,
since noise values close to 1 or -1 are rare, this
will be a fairly smooth image. Larger scaling can

increase the contrast.

2.3 Turbulence

Many natural textures contain a variety of
feature sizes in the same texture.

Perlin uses a pseudofractal “turbulence” function :

K= ﬁ:—n_%@‘

The turbulence function is shown of resulting

value differently according to various values of M.

1702 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 7, NO. 12, DECEMBER 2004

1) Application of Perlin’s function for 3d noise
and turbulence

All for images [Fig. 1] as above use Perlin’s
function for 3d noise and turbulence[2]. Perlin's
function is used to calculate the value of “t” in the

following equation :

float ¢ = 0.5%(sin{(periodxpoint.x()) +
(txdistortion)) + 1.0)

The value of “c” is then used to create RGB
values for the spheres. The period in all cases is
20.0. The distortion is the only variable in these

images.

2) Other function using Perlin’s noise

As shown images [Fig. 2], (e) to (h) have been
generated using Perlin’s noise function differently
than images (a) to (d). Perlin’s function is used to
calculate the value of “t” in the following equatio
n : float ¢ = cos(point.x(} + t)

The value of “c” is used to create RGB values
for the spheres.

3. IMPLEMENTATION

A marble-like effect is created using a solid

(a) distortion=1 (b) distortion=10

(e) distortion=1 (f) distortion=10

texture generated by a noise function from Ken
Perlin. Different marble effects are possible by
varying the parameters : scale, period, distortion,
and octaves, which are input file arguments that

define marble textures.

3.1 Passing Back Algorithm

We present a virtual texture class for storing the
color attributes for primitives. One implemen-
tational question that arises is where to calculate
the color of the intersected point on the hit object.
We could have the object calculate its color within
the hit function and then pass it back in the hit
record as we have done before.

In this [Fig. 3] as follows, the shadowHit routine
of defined class Shape is a simple efficiency
technique that takes advantage of the fact that we
don’'t need to know any information about the
occluding object. In the regular hit function we
would like to pass back some information about the
hit object. In order to keep the number of parameters
to the hit function reasonable, we use a struct to
pass back this information[5].

We pass two parameters into the virtual value
function. The Vector3 parameter is 3D hit point we

(d) distortion=40
Fig. 1. Using Perlin’s function and then various turbulent sphere by distortion.

(c) distortion=20

T

(h) distortion=40

(g) distortion=20
Fig. 2. Using Perlin's other function and then various turbulent sphere by distortion.

Combination Algorithm of a Material for Marble Solid Effects 1703

ShadowHitt Passing Back

information(color) of
hit object

HitRecord{
Vector3 normal, hit_p; Vector2 uv;
Texture *hit_tex}

Fig. 3. Passing Back Algorithm.

14_—‘ color output J
{ Channel Colar -+

(, ‘4—"(derived class \
l

'. » Noise o 1

| Chamnel .

Computation octave of noise'=>Cof§bine nto \marbleJ

Attach any color component of a matenal
(ambient, diffuse. specular): -

Fig. 4. Channel class for attach component of a material into marble.

material “red” { float n = 0.0f;
} diffuse { color <100 >) for (int i = 0; i < octaves; i++)
which will set the diffuse component to a constant red. { float 0 = (float X 1 << i);

material “marble” { n += Noise3(v +o0) /o0 }

diffuse { return n;
marble {
scale 1.0 Fig. 6. Code for computing octaves of noise.
period 1.3
distortion 3
octave{s 12 shading(hit_p in the hit record). The Vector2 pa-
ramp . L
< 1.0 0.000 0.0 > rameter will be used in implement 2D texture
Z ig 8%%8 88 ; maps. Also, vector class is one of the foundations
<10 0375 0.0 > of most graphics programs. We h i
<10 0500 00 S grap programs ave used aggressive
< 1.0 0625 0.0 > inline to avoid function call overhead and use of
< 1.0 0.750 0.0 > . .
< 1.0 0.875 0.0 > const functions allow the compiler to more aggre-
) } ssively optimize. There are other techniques for
} speeding up a vector class which involve added

}

Fig. 5. Code for setting diffuse channel to the
marble.

data members, such as length, which are pre-

computed during initialization.

1704 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 7, NO. 12, DECEMBER 2004

3.2 Computation Octaves of Noise

Basically as you know Perlin noise simply takes
a sum of a set of noise functions, multiplying at
each s uccessive octave passed into the noise
function by 27, and then the result is divided by
2°1. Note that an octave corresponds to an increase
by a factor of 2 in the frequency, which is exactly
what happens when you add successive Perlin
components together.

The sine function for computing the new turbstripe
function looks as follows :

t = fabs(sin(3.1415926535 x(frequency xp.y +
distortionxPerlinNoise(pxscale, octaves))));

The PerlinNoise function is simply an iterative
function that does the previously described summation
of noise.

We first created a new class called a Channel.
The function of class is to provide a color output.
There is a class derived from the channel called
a ChannelColor, which is simply a constant color.
Derived from the Channel class is also a Channel~
Marble class which instantiates a Noise class to
compute octaves of noise and combines them into
marble. In the scene description file, you can now
attach any color component of a material (currently
only ambient, diffuse and specular)!) to any of

these channels. It looks like this in the scene-file:: -

which will set the diffuse channel to the marble
function with the given parameters as above [Fig.
5]. The function, We use to compute the marble
looks something like the following :

abs(sin(180x(periodxv.x +
distortion xFractal3(v,octaves)));

where v is the (possibly scaled) position at
which the noise is to be computed and Fractal3 is
a fractal sum of noise computed as follows :

Where Noise3 is the standard Perlin Noise

1) material called ambient, diffuse, and specular term was
have relation with lighting that was added to the color
every surface.

function.

4. EXPERIMENTAL RESULTS

The measurements presented in this paper were
using a Pentium(R) 4-M CPU 2.00 GHZ with
512MB SDRAM and return the elapsed time in the
form (HHhMMmSS.Ss) are for 500x500 pixel
images.

To present the completed marble, we use an
passing back algorithm and combination with channel
of a material. In experimental result of this paper
that application by passing back algorithm and
varying the parameter such as scale, period, dis-
tortion, octaves of noise make showing the superiority
of optimized rendering of spheres and perfect another
marble effects.

Experimental method of this paper is trying to
optimize a ray tracer for the sort of sphere objects
then all of the images above can be regenerated
by specifying the appropriate scene file on the
command line of the program.

As you looks our experimental data above that
each (a), (b), (¢), (d) image in [Fig. 7-10] result
of render can presented another effect according
to change value of each noise parameter. Moreover,
We have to found that experimental result value
of render are showing to give effected by octaves
of noise. Also experimentation 5 of [Fig. 11] that
have to make a best realistic looking marble

sphere.

5. CONCLUSIONS AND FUTURE WORK

Nowaday, market size of digital image in world
around is looks to rapidly growth. For this, not only
but also generation solid texture that we can create
various kind of realistic looking marble texture.

As referred in this study, application by passing
back algorithm and varying the parameter such as
scale, period, distortion, octaves of noise make

showing the superiority of optimized rendering of

Combination Algorithm of a Material for Marble Solid Effects 1705

scale period distortion octaves render
1 05 1.0 1.0 8 2.0
(a) scale=0.5 (b) scale=1.0
2 1.0 1.0 1.0 8 2.0
3 2.0 1.0 1.0 8 2.0
- (c) scale=2.0 (d) scale=4.0
4 4.0 1.0 1.0 8 20 marble solid texture at
different scale

Fig. 7. Experimentation 1 : different scale.

scale period distortion | octaves render
1 10 0.5 1.0 8 2.0
(a) period=0.5 (b) period=1.0
2 1.0 1.0 1.0 8 2.0
3 1.0 2.0 1.0 8 2.0
(¢c) period=2.0 (d) period=4.0
marble solid texture at
4 10 40 10 8 20 different periods

Fig. 8. experimentation 2 : different period.

scale period distortion octaves render
1 1.0 1.0 05 3 20 N
(a) distortion=0.5 (b) distortion=1
2 1.0 1.0 1.0 8 2.0
c3 1.0 1.0 2.0 8 2.0 . . . -
(¢) distortion=2.0 (d) distortion=4
5 marble solid texture at
4 1.0 1.0 4.0 8 20 different distortion

Fig. 9. experimentation 3 : different distortion.

spheres and perfect another marble effects.
Basically, if we can cut down the amount of inter-
section tests per ray then we could dramatically
increase the speed of rendering.

We have presented a method that further work

will include the ability to combine several channels
arithmetically, so We can get multi-pass effects,
or for things such as a base diffuse color mo-
dulated by a marble procedure or an image (texture)

map.

1706 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 7, NO. 12, DECEMBER 2004

scale period distortion | octaves render
1 1.0 1.0 1.0 1 0.8
(a) octave=1.0 (b) octave=2.0
2 1.0 1.0 1.0 2 1.0
3 1.0 1.0 1.0 4 14
(c) octave=4.0 (d) octave=8.0
4 10 10 10 8 20 marble solid texture at
’ ’ ’ : different octaves

Fig. 10. experimentation 4 : different octave.

scale period distortion | octaves render
1 1.0 13 3.0 12 28 (a) marble 1 (b) marble 2
2 1.0 15 1.7 32 6.3
3 03 12 30 s 21 (¢) marble 3 (d) marble 4
best attempts at making realistic looking
4 2.7 1.6 06 8 2.1 marble sphere

Fig. 11. experimentation 5

6. REFERENCES

[1] P.S. Heckbert, “A Survey of Texture Mapping”,
IEEE Computer Graphics & Applications, pp.
56-67, 1986.

[2] Perline and Eric Hoffert, “Hypertexture”, Com~
puter Graphics, Proceedings of ACM SIGGRAPH,
‘89, Vol. 23, No. 3, 1989.

[3] Perline, “Improving Noise”, Transaction on
Computer Graphics, Proceedings of ACM
SIGGRAPH ‘02, Vol. 21, No. 3, pp. 0681-0682,
2002.

: realistic looking marble sphere.

[4] David S. Ebert, Texturing & Modeling : A
Procedural Approach, 3rd edition, Morgan
Kaufmann Publishers, San Francisco, 2002.

[5] Upstill, The Renderman Companion : A Pro-
grammer’s Guide to Realistic Computer Graphics,
Addison-Wesley Publishers, 1990.

[6] Ron Brinkmann, The Art and Science of Digital
Composition, Academic Press, San Diego, pp.
1-121, 2001.

{7] Anthony.A Apodaca, Larry Gritz, Advanced
Renderman : Creating CGI for Motion Pictures,
Morgan Kaufmann Publishers, pp. 20-70, 2001.

Combination Algorithm of a Material for Marble Solid Effects 1707

Tae-Jin Park

He received his B.S. degree in
physics from Dongeui Univer—
sity, Busan, in 1988. He received
the M.S degree in Computer
Science and Information from
Pukyong National University,
Busan in 1995. And he received
his Completion of a Doctor's course in computer
science from Pukyong National University, Busan in
2002.

He worked for Kyungnam College of Information as
a Lecturer from 1995 to 1997, And he worked for
Dongeui Institute of Technology as concurrent pro-
fessor in Dept. of Electrical and Computer Engineering.
And also worked the Grouping of Electrical and Com-
puter Engineering of Koje College as a Invitation pro-
fessor from 2000 to 2004.

His main interests are in multimedia information
system, computer graphics, medical image, embedded

system, software reliability and safety engineering.

Man-Gon Park

1976 B.S, Dept. of Mathematics
Education, KyungPook Nati-
onal University
1980 M.S, Dept. of Computing
Science & Education,
KyungPook National Univ.
1987 Ph.D, Dept. of Computing
Science & Education, KyungPook National Univ.

1992~1993 Post Doctoral Course in Computer En-
gineering, Dept. of Electrical & Computer En-
gineering, Univ. of Kansas, Lawrence, USA

1979~1981 Professor, Dept. of Computer Science,
KyoungNam Technical College

1987~1990 Director of Central Computer Center/ Vice
Dean of Nature Science College, PuKyong Na-
tional University (PKNU)
1988~1997 Chairman of Dept. of Computer Science
(Undergraduate & Graduagte Courses), PKNU

1997~2002 Faculty Consultant, Div. of Information
Technology & Communication, Colombo Plan
Staff College, Manila, Philippines

1981 ~Present Professor, Dept. of Computer Science,
PKNU

1997 ~Present Advisory Professor for International
Information Technology, ADB/ UN ESCAP/
ILO APSDEP/ KOICA/ JICA

2002~ Present Director, Colombo Plan Staff College
(Intergovernmental International Organization),
Manila, Philippines

Research Interests: Software Reliability & Safety

Engineering, Software Quality

Engineering, Software Metrics,

Software Reusability & Reengi-

neering, Software Testing & In-

spection, Fault-Tolerant Software

System, Methodology of Infor—

mation System Development, In-

ternet, BPR, GIS, and Multimedia

Information Processing Techinques

