JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 7, NO. 12, DECEMBER 2004(pp. 1729-1736)

An Efficient Collision Detection in the Dynamic Spatial
Subdivisions for an MMORPG Engine

Sung-ug Lee’, Kyung-hwan Park""

ABSTRACT

This paper proposes an efficient collision detection method in the dynamic spatial subdivisions for the
MMORPG engine which requires realtime interactions. An octree is a suitable structure for static scenes
or terrain processing. An octree spatial subdivision enhances rendering speed of scenes. Current spatial
subdivisions tend to be highly optimized for efficient traversal, but are difficult to update quickly for
a changing geometry. When an object moves to the outside extent for the spatial subdivisions, the
acceleration structure would normally have to be rebuilt. The OSP based on a tree is used to divide
dynamically wide outside which is the subject of 3D MMORPG. TBV does not reconstruct all tree nodes
of OSP and has reduced rebuilding times by TBV information of a target node. A collision detection
is restricted to those objects contained in the visibility range of sight by using the information established
in TBV. We applied the HBV and ray tracing for an efficient collision detection.

Keywords: Octree, collision detection, spatial subdivisions, ray tracing, mmorpg

1. INTRODUCTION

A game is composed of a game engine and var-
ious game contents. The game engine includes
game logic, level format, audio processing, event
handler and input processing. Fig. 1 shows a
general structure of the game design.

A speed is important in a game which should
manage wide outside regions like 3D MMORPG
(Massively Multi-player Online Role Playing
Game). It is scene of subdivision about the large
terrain that uses OSP. An octree is a suitable
structure static scene or terrain processing. Cur-
rent spatial subdivisions tend to be highly opti-
mized for efficient traversal, but are difficult to

% Corresponding Author : Sung-ug Lee, Address : (604-714)
840, Hadan2-dong, Saha-gu, Busan, Korea, TEL : +82-
51-200-7776, FAX : +82-51-200-7783, E-mail : sunlec@
smail.donga.ac.kr
Receipt date : July 20, 2004, Approval date * Oct. 5, 2004
*Dept. of Computer Engr. Dong-A Univ.
" Dept. of Computer Engr. Dong-A Univ.

(E-mail : khpark@daunet.donga.ac kr)
% This paper was supported by the Dong-A University
matching fund for IT facilities supporting program of
Ministry of Information and Communication, in 2002.

Event Handler

Level_ Data

_ Audio "“*“':) Graphics - "
-~ L -
L Platform l

Fig. 1. Structure of game design.

update quickly for changing geometry. When an
object moves outside the exit of the spatial
subdivision, the acceleration structure would
normally have to be rebuilt. Therefore, dynamic
environment requires rapid updates to acceleration
structure.

In this paper we seek to an collision detection
method in the spatial subdivisions for an
MMORPG engine.

TBYV does not reconstruct all tree nodes of OSP
for dynamic process and has reduced rebuilding
times by changing the TBV information of a
working target node. A collision detection is re-
stricted to those objects contained in the visibility

1730 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 7, NO. 12, DECEMBER 2004

range of sight by using the information established
in TBV. Also, we apply the HBV and ray tracing

for a collision detection.

2. DYNAMIC SCENE PROCESSING

2.1 Spatial Subdivision

The game design such as 3D MMORPG requires
various theories of several technologies. The speed
is an important point in a game engine design.
Dynamic scene means that objects in the model are
not static but can move just as the camera moves.
This means that the model must be preprocessed
to obtain a hierarchical representation. If an object
in the model moves, the whole structure should be
rebuilt again. An octree is a data structure to
represent objects in the 3D environment. An octree
is a suitable structure for static scenes or terrain
processing. It is used in a data structure to store
transparency benefits for interactive object and
attach catalog of each individual appending various
environment such as game.

However, when an object moves to the outside
extent of the spatial subdivision, the acceleration
structure would normally have to be rebuilt. As
this is too expensive to perform repeatedly, we
seek to logically replicate the grid over space. If
an object exceeds the bounds of the grid, the object
wraps around before reinsertion. Then, ray
traversal wraps around the grid when a boundary
is reached. In order to provide a stopping criterion
for ray traversal, a logical bounding box is
maintained by containing all objects and including
the ones that have crossed the original perimeter.

As this scheme does not require grid recom-
putation whenever an object moves far away, the
cost maintaining the spatial subdivision will be
substantially lower. On the other hand, because
rays now may have to wrap around, more voxels
may have to be traversed per ray which will
slightly increase ray traversal time. Specifically,
the length of the object diagonal divides the length

of the grid diagonal. The result determines the grid
level. Hierarchical grid traversal is effective grid
traversal following modifications(3,6,13].

2.2 HBV Method

A bounding volume simply represents the vol-
ume of real object. The most suitable geometric
objects for bounding volumes are spheres and
boxes. Fig. 2 shows Hierarchical bounding volume.
It uses the following basic function to evaluate the
performance of a general algorithm working on
hierarchical data structures:

T = Nv#Cv+Np*Cp where

T ! total time spent on processing

Nv : the number of bounding volume test

Cv i the cost of single bounding volume test
Np : the number of objects processed face by face
Cp: the cost of processing a single object

The choice of bounding volume type is affected
by the following mutually contradicting factors:

- Bounding volume tests should be as accurate
as possible to lower Np(and hence the second term
Np+*Cp) and Nv. Usually, the better bounding
volume fits the scene object’s geometry, the more
accurate the test is.

- A single bounding volume test must be as fast
as possible.[1,7]

boundary |ine

Fig. 2. Hierarchical bounding volume.

2.3 OSP’s Spatial Subdivision Method

An octree is a suitable structure for static scenes
or terrain processing. The first octree node is the

root cell which is an array of eight contiguous

An Efficient Collision Detection in the Dynamic Spatial Subdivisions for an MMORPG Engine 1731

elements. Each of these elements can point to
another block of eight contiguous elements, where
each one can point to another block of eight
contiguous elements and so forth until a certain
maximum number of levels are reached. The last
level is the leaf level where the leaf elements or
vowels are stored[8]. One problem with octree is
that as objects are inserted and deleted, the tree
structure could become arbitrarily inefficient
unless some sort of prebalancing step is performed.
Voxel based structures are either grids or can be
hierarchical in nature, such as octree[2].

Fig. 3. OSP node structure.

The cost of building a spatial subdivision tends
to be O(n) in the number of objects.

Fig. 3 shows OSP node structure. An OSP is
a hierarchical method for spatial subdivisions. The
processing concept of octree needs adapt to
interactive environment. An OSP is used by spatial
subdivisions method. It minimizes the processing
of spatial subdivisions in 3D environment. Fig. 4
shows OSP class code.

class octree {
int iType ;
int Depth ;
FACE3D = flist ;
VECTOR3D min ;
VECTOR3D max ;
} VECTOR3D vCenter ;
class octree_node : public Limit_octree {
limit_octree * child[8] ;

class octree_leaf : public limit_octree {
polygon_list polygons ;
object_list objects ;

};

Fig. 4. OSP class code.

2.4 1BV

Bounding volume hierarchy is suitable to dy-
namic object scenes. If the scenes are dynamic, an
object movement should be contained, and then
additional time is needed to update the model to
reflect the motions of this object. The data
structure used in an occlusion method is updated
to reflect the possible positions of the object. To
avoid updating the structure for every dynamic
object at each frame, a TBV is created for each
occluded dynamic object, using some known
constraints on the object's motion. The TBV is
inserted into the structure instead of the object.

The data structure needed is as follows.

@ Priority queue for TBVs

@ List of moving visible objects
@ Time stamps for all objects
@ Data structure for the model

Following steps are executed for each frame: As
Fig. 5 shows, OSP has reconstructed all tree node
of OSP for dynamic process. But as Fig. 6 shows,
TBV has not reconstructed all tree nodes of OSP
for dynamic process, but it is able to reduce
rebuilding times by changing only the TBV
information for the working target node.

1) If there are any expiring TBVs in the TBV
priority queue, they are removed from the queue
and their objects are added to the list of moving
visible objects.

| | S

(a) (b) (c)

Fig. 5. OSP nodes might be needlessly deleted
and recreated during update (a) A verticat
view of an initial model (two primitives)
(b) after the deletion of dynamic primitive
(c) after the insertion of dynamic primitive
at new configuration.

1732 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 7, NO. 12, DECEMBER 2004

| / /

/|
/
4

/ .
(a) (b) (@)

Fig. 6. Using OSP eliminates unnecessary tree
updates. Step (a)(b)(c) OSF for spatial
subdivisions.

2) All objects in the list of moving visible objects
are calculated for their new positions, and these
new positions are updated in the data structure that
represents the model.

3) The visibility algorithm is executed on the
data structure as usual. If one encounters a node
that contains a TBV, this TBV is removed from
the TBV priority queue and its objects are added
to the list of visible objects. Also its new position
is calculated. For each visible object in the node,
stamp information should be updated in current
time.

4) When the algorithm ends, the list of visible
objects is updated so that each object that has an
old time stamp is removed from the list. Since
these objects are now becoming invisible, they are
associated with a new TBV that is inserted into
the TBV priority queue[5,13].

3. DYNAMIC ACCELERATION STRUCTURE
FOR COLLISION DETECTION

Interactive ray tracing has become a reality,
allowing exploration of scenes rendered with higher
quality shading than with traditional interactive
rendering algorithms. One of the problems with
interactive ray tracing is that previous implemen-—
tations only dealt with static scenes or scenes with
a small number of specially handled moving ob-
jects. Fig. 7 shows, An each step a processing
overview. Dynamic environments required that
rapid update to insert is usually accomplished by
mapping the axis aligned bounding box of an object

(b) 3D object’s bounding
boxes

(a) node view

(d) real collision
detection process

(c) uniform recursive
grid for TBV

Fig. 7. An each step a processing overview.

to the voxels of the grid. This effectively limits the
usefulness of interactive ray tracing to applications
that allow changes in camera position[1,8].

TBVs are used in conjunction with the hi-
erarchical structures that represent the moving
objects. A moving object is ignored until either of
the events happens: @ its TBV expires, which
means that the TBV no longer is guaranteed to
contain the object or @ visihility algorithm finds
out that the TBV that represents the object is
visible again, thus implying that the object might
be visible too.

pocedure updatee(Octree, primitive, new_config);
begin
v<—primitive.node;
dissociate(v,primitive);
primitive,config«—new_config;
while v.parent can be collapsed and not
(v contains primitive) do begin
vev.parent;
collapse(v);
end;
while not (v contains primitive) do
v<—v.parent;
insert(v,primitive);
end

Fig. 8. The OSP update algorithm.

An Efficient Collision Detection in the Dynamic Spatial Subdivisions for an MMORPG Engine 1733

The large models can take a long time to render,
even when hardware support such as Z-buffering
is available. If the scenes are dynamic, containing
moving objects, additional time is needed to update
the model to reflect these objects’ motions. This
makes it hard to attain the goal of interactivity.
Fig.9 shows, Occlusion culling is one of the key
techniques for output-sensitive rendering.

The data structure used by an occlusion culling
method is updated to reflect the object’'s possible
positions. To avoid updating the structure for
every dynamic object at each frame, a TBV is
created for each occluded dynamic object, using

some known constraints on the object’s motion.

void CullOctreee(Octree **pptrNodes , ViewFrustum&
viewFrustum,) {
//Check if the current node is in our frustum
if(lviewFrustum.isCubeelnFrustum(m_BBoxVetrices)){
m_Lift=0;
return;
}
if(m_bSubDivided) {
//Recurse to the bottom of these nodes and draw and
the end node’s vertices
CullOctree(pptrNodes,viewFrustum);
)
else
{ pptrNodes[q_NumVisibleNodes]=this;
g_NumVisibleNodes++;

)

Fig. 9. The data structure used by an culling
method.

In either case, the object must be considered
again. Spatial subdivisions allow efficient ray
traversal as well as rapid insertion and deletion for
scenes where the extent of the scene grows over
time. In theory, the tree structure allows O(nlogn)
insertion and deletion time which may be fast
enough.

The ray will detect all parents node until the root
node is reached. This is all levels in the hierarchy
that may occupy the same space as the currently
traversed leaf node. If an intersection is found

within the space of the leaf node, then traversal

is finished. If not, the next leaf node is selected and
the process is repeated. This traversal scheme is
same parent nodes that may be repeatedly tra—
versed for the same ray.

Here is how sphere plane collision works: If a
distance that the center is from the plane is less
than the radius of the sphere, it must be in-
tersecting the plane. We take the absolute value
of the distance when the center of the sphere goes
behind the polygon. It used the distance formula
to find the distance to the center point of the sphere

which is from the polygon’s plane.

Ax+By+Cz+d = 0 with ABC = Normal, XYZ = Point
distance = (vNormal.x * vCenter.x + vNormal.y *

vCenter.y + vNormal.z * vCenter.z +d);

Now we query the information just gathered.
The distance turns into negative numbers (with 0
being that the center is exactly on the plane). If
the absolute value of the distance just found is less
than the radius, the sphere intersects the plane.

if(fabs(distance) < radius)
return INTERSECTS;

else, if the distance is greater than or equal to
the radius, the sphere is completely in FRONT of
the plane.

else if(distance >= radius)
return FRONT;

If the sphere isn't intersecting or in FRONT of
the plane, it must be BEHIND

return BEHIND,;
}

Real collision detection is performed by three
steps: In the first step, we set up comparative
simple formed bounding box enclosing itself and
analyze collision between ray and bounding box,
then check on a collision possibility through an
impact or not with ray.

Second, next operation inspects a clash between

ray and bounding box. Lastly, third step searches

1734 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 7, NO. 12, DECEMBER 2004

a clear collision or not using collision detection
method in case only where an impact occurs
between ray and bounding box. The advantage of
this processing is that the method can detect a
collision at early time without doing all object
collision examination.

However, to make the traversal efficient, the tree
is augmented with extra data, and is occasionally
flattened into an array representation which
enables to fast traversal but either insertion or
deletion incurs a nontrivial cost.

void hbv_ftb (const Point & point) {
int near = (point dot node.plane_normal >= 0.0) ;

if (child[near]) child[near] — hbv_fth(point) ;

//for each polygon facing the near node in this plane
{

collision_detection() ;
}
if (childlnear"1]) child[near"1] — planar_ftb (point) ;
}

Fig. 10. collision detection code

The larger problem with spatial subdivisions is
that the grid structure is built within volume
bounds that are fixed before construction. It can
use scene of graph information getting the location
of the 3D object. It suggests the difference of the
method by hierarchical bounding box tree and
BSP(Binary Space Partitioning Tree). Also BSP
does not divide equally spatial subdivisions.

Spatial subdivisions become unit that forms
bounding pair. The most important requirements
for ray tracing are fast ray traversal and adaptation
in unevenly distributed data. We construct a
hierarchical uniform of recursive grid. Using a
value of divided space the processing builded a
TBYV then it constructs the space as tile map. A
title structure in 2D game is applied equally in 3D
game. This is broadly categorized into HBV and
voxel based structures. Time complexity is as
follow. If 3D objects are n items and a number of
triangle formating a side of each 3D object is

average m, the time complexity necessary for the

(a) The search of collision (b) OSP collision detection
possible node node

Fig. 11. Collision detection performed

collision detection is O(n’n® in case of not using
bounding box but it is O(n®+a) in time of applying
bounding box. Moreover, if HBV is used for
collision, all bound box is not need to detect. In
conclusion, the result may be required fast enough
when time complexity is O(nlogn).

Fig. 11 shows each step processing. The work
is the functionality of interactive ray tracing to
include applications where objects need to in-
teractively manipulate.

Table 1. Comparision of the method

Algorithm Method Data Structure I‘1me.
Complexity
incremental . .
free-insertion | [1e€ insertion tree Of(nlogn)
~ - approximation,
k-DOP top-down, hill climbing logkn
sweep-and- bubble or sweep-and-
rIL)me insertion rlime O(nlogn+k)
p sorting p
tree-insertion, | octree, queue,
our method TBY binary tree Ofnlogn)

4. CONCLUSIONS

An acceleration structures used for ray tracing
have been designed and optimized for an efficient
traversal of static scenes. As it becomes feasible
to do interactive ray tracing for moving objects,
new requirement are posed upon the acceleration
structures. Dynamic environment requires rapid
updates to the acceleration structures.

We proposed an efficient collision detection in

the spatial subdivisions for a game engine which

An Efficient Collision Detection in the Dynamic Spatial Subdivisions for an MMORPG Engine 1735

requires realtime interactions. The OSP based on
tree to dynamically fast process for wide outside
become a main target of 3D MMORPG. An octree
is a suitable structure for static scenes or terrain
processing. An octree spatial subdivisions enhance
rendering speed for scenes. Current spatial sub-
divisions tend to be highly optimized for efficient
traversal, but are difficult to update quickly for
changing geometry. When an object moves to the
outside extent of the spatial subdivisions the
acceleration structure would normally have to be
rebuilt. However a realistic processing is required
in the environment of realtime dynamic game.

The results obtained in this study have shown
that:

In view of processing forms

1) We have reduced a processing sphere divided
a space with OSP to fast dynamically settle wide
outside.

2) We have constructed the position information
of each object using TBV.

3) We makes use ray tracing for collision de-
tection by HBV.

In view of time complexity

1) A case of not using bounding box for collision
detection is O(n’n®

2) A case of using bounding box for collision
detection is O(n’*+a)

3) A case of using HBV for collision detection

is O(nlogn)

In conclusion, the result has required fast

enough when time complexity is O(nlogn).

5. REFERENCES

[1] Sung ug Lee, “A Collision Detection from
Division Space for Performance Improvement
of MMORPG Game Engine,” Korea Infor-
mation Processing Society, Vol 10-B, No 5,
pp. 567-574, August 2003.

[2] Sung-ug Lee, Kyung-hwan Park, “A Colli-

sion Detection Octree Partitioning Method
using CLOD,” Korea Information Processing
Society, Proc. of the 16th KIPS FALL Con-
ference, pp. 615-618, 2001.

[3] Batagelo Harlen Costa and Wu Shin-Ting,
“Dynamic Scene Occlusion Culling using a
Regular Grid,” Proc. of the XV Brazilian
Symposium on Computer Graphics and Image
Processing, pp. 43-50, 2002.

[4] D. Cohen-Or, Y. Chrysanthou, C. T. Silva, and
F. Durand. “A Survey of Visibility for Walk
through Applications,” SIGGRAPH 2001
Course Notes, August 2001.

[5] Eberly, David H., 3D Game Engine Design,
Academic Press, 2001.

[6] H. C. Batagelo and S. T. Wu, “Dynamic Scene
Occlusion Culling using Regular Grids”, Tech-
nical report, State University of Campinas,
Campinas, Brazil, December 2001.

[7]1 H. J. Haverkort, M. de Berg and J. Gud-
mundsson, “Box-Trees for Collision Checking
in Industrial Installations,” Proc. of the 18th
ACM Symp. on Computational Geometry, pp.
53-62, 2002.

[8] J. Cohen, M. Lin, D. Manocha, K. Ponamgi,
“I-COLLIDE: An Interactive and Exact Colli-
sion Detection System for Large-Scaled En-
vironments,” Proc. of the 1995 ACM Inter-
national 3D Graphics Conference, pp. 189-196,
1995,

[8] M. Kelleghan, “Octree Partitioning Techni-
ques,” Game Developer Magazine, pp.30-33,
1997.

[9] M. de Berg, M. van Kreveld, M. Overmars and
0. Schwarzkopf, “Computational Geometry:
Algorithms and Applications,” Springer—-
Verlag, Heidelberg, 1997.

[10] M. de Berg, M. de Groot and M. Overmars,
“New Results on Binary Space Partitions in
the Plane, Computational Geometry: Theory
and Applications,” pp. 317-333, 1997.

[11] M. de Berg. Ray Shooting, “Depth Orders and

1736 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 7, NO. 12, DECEMBER 2004

[12]

[13]

[14]

Hidden Surface Removal,” Lecture Notes in
Computer Science 703, Springer-Verlag, Berlin,
1993.

N. Greene, “Occlusion Culling with Optimized
Hierarchical Z-Buffering,” SIGGRAPH 2001
Course Notes, August 2001.

0. Sudarsky and C. Gotsman, “Dynamic
Scene Occlusion Culling,” IEEE Trans. on
Visualization and Computer Graphics, 5(1),
pp. 217-223, 1999.

S. Gottschalk, M. C. Lin, D. Manocha, “A
Hierarchical Structure for Rapid Interference
Detection,” Proc of Siggraph 96, ACM Press,
New York, pp., 171-180, 1996.

Sung-ug Lee

He received the BS degree in
department of economics from
Dong-A University, in 1989 and
M.S degree in computer engi-
neering from Dong-A Univer-
sity, in 1991. Since 2001, he has
been a professor of computer
engineering at Dong-A University. His research
interests include Multimedia Systems, 3D Graphics
and Game Distance Education.

Kyung-hwan Park

He received the BS degree in
computer engineering from
Kyungpook National University,
in 1981 and M.S and PhD
degree in computer engineering
from Seoul National University,
in 1983 and 1990. In 1998, he was
a visiting scholar at University of California, Irvine.
Since 1987, he has been a professor of computer en-
gineering at Dong—A University. His research interests
include Multimedia Systems, Electronic Commerce and
Distance Education.

