JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 7, NO. 12, DECEMBER 2004(pp. 1754-1764)

An Effective Pre-refresh Mechanism for Embedded
Web Browser of Mobile Handheld Devices

Huagiang Li*, Young-Hak Kimﬁ, Tae-Hyong Kim'™

ABSTRACT

+

Lately mobile handheld devices such as Personal Digital Assistant (PDA) and cellular phones are getting
more popular for personal web surfing. However, today most mobile handheld devices have relatively
poor web browsing capability due to their low performance so their users have to suffer longer com-
munication latency than those of desktop Personal Computers (PCs). In this paper, we propose an effective
pre-refresh mechanism for embedded web browser of mobile handheld devices to reduce this problem.
The proposed mechanism uses the idle time to pre-refresh the expired web objects in an embedded web
browser's cache memory. It increases the utilization of Central Processing Unit (CPU) power and network
bandwidth during the idle time and consequently reduces the client’s latency and web browsing cost.
An experiment was done using a simulator designed by us to evaluate the efficacy of the proposed
mechanism. The experiment result demonstrates that it has a good performance to make web surfing

faster.

Keywords: Pre-refresh mechanism, embedded web browser, mobile handheld devices

1. INTRODUCTION

Recent years, as World-Wide Web (WWW) tech—
nologies and mobile handheld devices have had a
very fast development, mobile handheld devices
such as Personal Digital Assistant (PDA) and cel-
lular phones are much more popular for personal
web surfing. Most current mobile handheld devices
have been integrated with embedded web browser
for surfing the internet, and users can access the
internet from anywhere at any time. Furthermore,
in the future, the mobile handheld devices will
greatly replace desktop Personal Computers (PCs)
for accessing the internet.

% Corresponding Author : Tae-Hyong Kim, Address:
(730-701) 1, Yangho-dong, Gumi, Gyeongbuk, Korea, TEL
1 +82-54-478-7528, FAX | +82-54-478-7539
E-mail : tachyong @kumoh.ac kr
Receipt date : Feb. 9, 2004, Approval date : May 31, 2004
' China R&D Center, LG Electronics

(E-mail : huagiang @lge.com)
** Kumoh National Institute of Technology

(E-mail : kimyh@kumoh.ac.kr)
" Kumoh National Institute of Technology
¥ This paper was supported in 2003 by Research Fund,
Kumoh National Institute of Technology.

However, today most mobile handheld devices
have relatively poor web browsing capability
because of the slow bandwidth of wireless con-
nection, the slow speed of Central Processing Unit
(CPU), the low capacity of Random Access Mem-
ory (RAM) and flash Read Only Memory (ROM),
the small display size of Liquid Crystal Display
(LCD), the short life-cycle of battery and the
deformity of embedded web browser. Therefore,
users have to suffer longer internet communication
latency than those of desktop PCs. In addition,
embedded web browsers have the relatively poor
web browsing ability because of the defects of the
hardware used in mobile handheld devices. The
deformity of most embedded web browsers not
only increases the internet communication latency
but also induces the poor vision effect of internet
surfing.

These hardware and embedded web browser’s
problems bring long internet communication la-
tency when users access the internet. To tackle
this problem, we propose an effective pre-refresh

mechanism for embedded web browsers of such

An Effective Pre-refresh Mechanism for Embedded Web Browser of Mobile Handheld Devices 1755

mobile handheld devices. In this paper we first
summarize the existing technologies for reducing
client latency, and indicate their advantages and
disadvantages, then we propose an effective pre—
refresh mechanism for mobile handheld device's
embedded web browser to reduce the client com-
munication latency and make user’s web surfing
faster. The experiment was done using a simulator
designed by us and we analyze the experiment
results to evaluate the ability of reducing client
communication latency of this mechanism.

The structure of this paper is as follows. In
section 2, the existing technologies are explained
for reducing client communication latency, and we
indicate their advantages and disadvantages. The
proposed mechanism is explained in section 3 with
its approach and basic assumptions. Section 4
explains the simulation process and performance
analysis: the performance metrics, the implemen-
tation method of the simulator, and the analysis of
the simulation results. Finally the conclusions and

the future work are given in section 5.

2. RELATED WORK

Ever since WWW emerged, reducing client
latency has been one of the primary concerns of
the Internet research and development community.
A lot of techniques were proposed for reducing
client latency as follows.

Prefetching between caching proxies and
browsers[1] is a well-known technique for re—
ducing latency for modem users. Because the low
modem bandwidth is a primary contributor to client
latency, this approach relies on the proxy to predict
which cached documents a user might reference
next, and takes advantage of the idle time between
user requests to push or pull the documents to the
user. The authors said this approach can reduce
user perceived latency up to 23.4%. But this
approach is not supported by most current Internet
Service Providers (ISPs) and Local Area Network
(LAN) proxies, because it is very difficulty to

realize and imposes a big process burden for
proxies.

Large browser cache is another technique to
reduce client latency[1]. It increases the hit ratio
and reduces network traffic. Infinite browser cache
(almost no replacement occurs) is supposed in the
experiment[1]. The result shows it reduces 4.19%
client latency. But this approach is absolutely not
fit for mobile handheld devices. Taking PDA as an
example, general desktop PC’s browser cache has
the a default size of 5~8MB(1]. But most current
PDA products have the system memory from 8MB
to 32MB and Flash ROM from 2MB to 32MB. It
is impossible to allocate a big browser cache to
PDA.

Delta compression technique{2] only transfers
modified web pages between the proxy and client.
That is, if an old copy of the modified page exists
in the browser cache, the proxy only sends the
difference between the latest version and the old
version. The authors said this approach can
eliminate 88% of bytes in transfers of modified
objects{2]. But until now, this technigue is not an
official standard for an extension of HyperText
Transfer Protocol (HTTP)[3]. Most current web
servers, ISPs, proxies and clients do not support
it. So mobile handheld device which uses wireless
modem for web surfing can not get benefits from
delta compression technique.

Application-level compression to HyperText
Markup Language (HTML) document was in-
vestigated in the literature[24]. It has suggested
that HTML texts can be first compressed, and then
transferred from one end to another. HTTP/1.1
supports application-level compression via the
transfer-encoding tag[5]. This technique can el-
iminate 25% of bytes in transfers of HTML doc—
uments according to the average number reported
[2]. But this technique needs CPU overhead for
compression and decompression. It is not practical
for slow speed CPU used by mobile handheld
device. It will aggravate the burden of CPU and
memory of mobile handheld devices during web

1756 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 7, NO. 12, DECEMBER 2004

surfing and may result in more latency.

3. THE PROPOSED MECHANISM

We have summarized the current technologies
for reducing client latency and indicated their
advantages and disadvantages in section 2.
Because those techniques, however, are not fit for
reducing client latency for mobile handheld de-
vices, a new effective pre-refresh mechanism is
required for mobile handheld device’s embedded

web browser.

3.1 The Approach

After having plentifully observed users’ web
browsing, we found they usually have a common
habit in their web surfing. It means every user has
his some favorite web addresses. For example,
somebody likes Yahoo, Google, Microsoft, etc.
From the beginning of browsing, users always
open one of his favorite web pages and find the
information which he wants. During a long period,
users always mainly concentrate on some favorite
web pages. After a long period, the internet web
objects (please refer to Table 1) saved in a web
browser cache are those which the user always
browses. So the favorite web objects of most users
are saved in the web browser’'s cache.

Furthermore, most internet web objects saved
in web browser’s cache have the expiry time de-
fined by an HTTP Header, Expires. The expiry
time of internet web objects means their lifetime.
After that time, if the user has a request to this
web object, the browser has to refresh or reload
this web object. The web object’s expiry mech-
anism is mainly used to judge if the web objects
are fresh or stale, in other words, if it is necessary
to send a request to the remote web server for
reloading and validating these web objects. Some
web objects are not assigned the expiry time. In
this case some browsers will calculate a heuristic
expiry time for those web objects with their HTTP

Table 1. Internet web object type

Internet Web Object Type
Microsoft HTML Document 5.0
Joeg, gif, ipg, png, ico, Xbm,
Cabinet

Cascading Style Sheet Document
Common Gateway Interface (CGI)
hte file

HTML@TOP

INC file

Javascript

Microsoft Powerpoint, Word document and other
MS-DOS Application

PHP, PHP3, ASP, PHTML, SHTML, XML Document
Shockwave Flash Object

Coockie

Others

headers, Last Modified Time and Max—age. Let's
see an example, when you open the ‘Temporary
Internet Files' folder in the Microsoft Windows,
you will see every web object saved in this cache
has eight attributes, one of which is Expiration
Date. You can see certain expiry time for some
web objects. But note that the time in expiration
date attribute is Greenwich Mean Time (GMT),
not local time[6].

We have observed 7279 web objects cached in
‘“Temporary Internet Files' folder. Image objects
such as gif, jpeg, and jpg have generally the expiry
time from one month to a year, the Cascading Style
Sheet (CSS) documents from several days to one
year, the Javascript files from several hours to one
year, and the HTML document objects from
several hours to several days. Especially, most
all-around commercial web sites continuously
refresh their web pages. For example, “www.
chosun.com” is the web address of a famous
Korean news web site; the web pages of this web
site are refreshed many times for an hour. For both
mobile handheld device's users and desktop PC’s
users, whenever users open the browser and surf
the internet, almost all the HTML document ob-
jects are saved and many other objects in the
browser cache are expired. And for every request,

An Effective Pre-refresh Mechanism for Embedded Web Browser of Mobile Handheld Devices 1757

a browser mainly executes the process shown in
Fig. 1{7]. For every expired web object in the
cache, the browser will use the HTTP headers
Last-Modified and Etag to validate this object in
the web server[6]. If that object is not changed,
the browser will send it directly to the user;
otherwise, the browser will refresh that object.

DNS Query

|

Connection
Establishment

I

Send Request

l

Close Connection

Refresh Present

Fig. 1. Steps for every request in a browser.

In addition, during the user's reading web
documents, there is much idle time wasted. This
is a huge waste because the mobile handheld
device’s users should pay according to the time in
use when they surf the internet. Furthermore, since
most mobile handheld devices have relatively poor
hardware performance and weak embedded web
browser, the user has to spend a lot of time
impatiently waiting for web pages to come up on
the screen. Therefore, we use the idle time to
pre-refresh the expired web objects in an em-
bedded web browser's cache. It means the em-
bedded web browser will automatically refresh the
expired web objects in the cache during the idle
time. After the user reads some documents, if he
or she requests the web objects which have been
already pre-refreshed in the cache, the web objects
will be displayed very fast to the user. Furthermore
this mechanism will increase the utilization of CPU
power and network bandwidth during the idle time,
so it will consequently reduce the client’s latency

and web browsing cost.

The proposed pre-refresh mechanism helps
mobile handheld device’'s embedded web browser
automatically detect the idle time during user’s
web surfing and automatically refresh the expired
web objects in the browser cache during the idle
time. The refresh sequence of the expired web
objects abides by the predefined rule.

3.2 Basic Assumptions

Before explanation of the details of the pre-
refresh mechanism, some assumptions have to be
made. The proposed mechanism is effective if and
only if these assumptions are satisfied. The basic

assumptions on the pre-refresh mechanism are:

e Users have the idle time between the requests,
because users often read some parts of one web
page’s document before jumping to the next one.
This idle time varies greatly from several seconds
to several minutes, which depends on the user and
the size of web page's documents.

© The browser can predict which web pages a
user will access in the near future based on the
number of references for every cached object ob-
served from the past period. We will make a rule
to automatically pre-refresh the expired web ob-
jects with the high access possibility during the
idle time.

® The browser has cache memory that holds the
user's favorite web pages. Furthermore, since most
mobile handheld devices have small flash ROM, it
can not allocate much memory capacity for em-
bedded web browser’s cache, and most commercial
web sites make their web pages so big; for ex-
ample, the full content of Yahoo main page is
128KB including HTML documents and other web
objects such as gif, jpg, Javascript, Flash, etc. It
is impossible for most embedded web browsers to
support and cache all the web objects. But the
HTML document can be cached in any embedded
web browser. So we assume only HTML doc-

1758 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 7, NO. 12, DECEMBER 2004

uments are pre-refreshed. It is reasonable because
the text information in the HTML documents is the
most important for users in general. Furthermore,
if an HTML document is pre-refreshed, other web
objects embedded in this HTML document may be
also refreshed together.

Fig. 2 shows the cumulative distribution of user
idle time in the UC Berkeley (UCB) traces[1]. In
the literature{1], the authors estimated the idle time
by calculating the difference between the estimated
end-of-transmission of one request to the start of
the next request from the same user. Fig. 2 also
includes the idle time distribution observed from
two other LAN web traces, DEC[8] and Pisal9].
The curves are similar to each other and show that
there is inherent idle time between user requests;
about 40% of the requests are preceded by 2 to 128
seconds of idle time, indicating plenty of pre-

refresh opportunities.

100

80
E w)
7 905 —a— UCB
K - #- DEC
g 44 - 0—- Pisa
)

0 ——r—r—rrrrrq—r—l—rrrnr]—ﬁﬂ'rrm']
1 10 100 1000
Idle Time Since Previous Request

Fig. 2. Cumulative distribution of idle time between
user requests(1).

3.3 The Pre-refresh Mechanism

The basic pre-refresh mechanism is as follows.
First, an attribute named reference number is
allocated to the cached HTML document object in
the embedded browser's cache. Reference number
means the number of reference for every cached
HTML document in the past period. In most web
browser caches, every cached web object has
several attributes. For example, Microsoft Internet

Explorer's cache has 8 attributes: size, name,

internet address, type, expiration date, last mod-
ified date, last accessed date, and last validated
date. We add reference number attribute to the
web browser cache. This new attribute is most
important in our design, because pre-refresh, sort,
and deletion of the cached HTML documents are
decided by this attribute. We will use this attribute
as a primary index to sort the cached HTML
documents in the embedded web browser. If a
HTML document object is cached for the first time,
we assign 1 to its reference number. Later, if the
user requests this HTML document again and this
HTML document is still in the cache, we increase
its value by 1. We believe, after a long period,
among cached HTML documents the user's fa-
vorite web pages will have high reference number.
Such cached HTML documents have the high
access frequencies, and possibly they will be re—
quested again in the near future.

Second, the attribute reference number is used
as the primary index, and the attribute size as the
second index to sort all cached HTML document
objects. The attribute size is a default attribute in
most browsers’ cache and indicates the size of the
cached HTML document. During sorting, we use
reference number to arrange the cached HTML
documents in descending order. When reference
number is same, the one which has relatively small
size value will be sorted ahead. The reason size
is used as the second index is, we think, cached
HTML documents with smaller size have higher
possibilities to be successfully pre-refreshed dur-
ing the idle time. Accordingly, when several cached
HTML documents have the same reference num-
ber, we select the one with the smallest size to
be pre-refreshed during the idle time.

Third, the Least Frequently Used (LFU) re-
moval policy is used with the attributes reference
number and size to remove HTML documents
when the cache is saturated. Because most mobile
handheld devices have smaller cache than desktop
PCs, the cache can be often saturated and then

An Effective Pre-refresh Mechanism for Embedded Web Browser of Mobile Handheld Devices 1759

some web objects should be removed to make room
for the coming one. Among many kinds of removal
policies for the network cache[10], we use the LFU
policy because it is reasonable to remove the
document with the lowest reference number. As
a result, LFU algorithm can remove the cached
HTML documents using this primary key. When
several cached HTML documents have the same
reference number, we will choose one with the
biggest size among them, because removing big-
sized documents can decrease the number of
removal operations. To sum up, the HTML docu-
ments with low reference number value and big
size value will be removed continuously until the
cache has enough room for the incoming HTML
document.

Last, a background process is provided to pre—
refresh the expired HTML documents in the cache
during the idle time. This pre-refresh background
process runs while the browser is open. In a
general situation, when a user opens the embedded
web browser, he will input one web page’s address
in the browser's address edit box, and then request
it. In this case, the pre-refresh background process
will start when this request is finished and the
browser become idle. In another situation, if a user
opens his embedded web browser and left it there,
there is no request. In this case, after the user
opens his browser, the pre-refresh background
process will start when the browser become idle.
Then, how can we decide the browser became idle?
Through plentiful observing, we found some
condition as follows. After a user opens a web
page, he will look through its contents and search
for the information he wants. For example, when
a user opens the Yahoo main web page, he will
look through the page. When finding out the
information he wants, he will click the hyperlink
of that information to see its detailed contents. In
this case, the time used for looking through a web
page or seeing the detailed contents of a web page
will generally exceed 10 seconds. If a user is very

familiar with a web page, after opening the web
page, he will probably open another hyperlink soon
for the information he wants. For example, a user
who is familiar to Yahoo web page often directly
clicks the mail box hyperlink to see his new mails.
In this case, the time from opening a web page to
opening another hyperlink in the web page will not
exceed 10 seconds.

According to this observation, we decide the idle
time judgment condition as 10 seconds. It means
if a user has no request within 10 seconds, this
pre-refresh background process will refresh the
expired cached HTML documents continuously
according to the order decided in the second step.
Another problem we have to mention is that during
pre-refreshing, if the user has a request, the pre-
refresh process should be stopped unless the
request is for the object that is being pre-
refreshed. Because there are generally a lot of
expired HTML documents in the cache, continuous
pre-refreshing those expired HTML documents
needs much time; after a user finishes reading
some contents, he may have another request.
Therefore, we have to stop the pre-refresh process
in order not to affect the user's web surfing. Fig.
3 shows the flowchart representation of the pro-
posed pre-refresh mechanism.

4. SIMULATION AND PERFORMANCE
ANALYSIS

4.1 Performance Metrics
In order to evaluate the proposed mechanism, we

decided two performance metrics as follows.

o Request savings: the number of times that
user requests hit the pre-refreshed HTML doc-
uments in the browser cache under unexpired
condition, in percentage of the total number of user
requests during a browsing time of an experi-
mental browser.

©o Wasted bandwidth: the number of times that
user requests hit the pre-refreshed HTML doc-

uments in the browser cache under expired

1760 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 7, NO. 12, DECEMBER 2004

DNS query

Connection yes no

establishment

L Send request l ’ Refresh

Receive content

Close
L connection H Show to user H

i

Wait for Stop pre-refresh
a user request process

Continue to
pre-refresh

Fig. 3. Flowchart of the pre-refresh mechanism.

condition, in percentage of the total number of user
requests during a browsing time of an experi-
mental browser.

Between two metrics, request savings is the
main concern and the primary evaluation goal of
the proposed pre-refreshed mechanism. It will
prove if the pre-refreshed mechanism has a good
performance for reducing communication latency
for users. If more pre-refreshed HTML documents
are hit by the user requests under unexpired
condition, the proposed mechanism would work
better. Wasted bandwidth can be tolerated, because
it only uses the idle time’s network bandwidth and
CPU process ability. Without the proposed pre-
refreshed mechanism, these network bandwidth
and CPU process ability would be also wasted.

4.2 Simulation Environment

For performance evaluation of the proposed
mechanism, we first had tried to modify the open

source embedded web browser to implement the

mechanism. We found two open source embedded
web browser: ViewML and Mozilla. However,
ViewML[11] has no cache and no detailed doc-
uments for its structure and source code and
Mozilla[12] is so big that most current mobile
handheld devices do not have the ability to use it.
Therefore, we construct a simulator designed by
ourselves to implement the proposed mechanism.

Many application development tools such as
Microsoft Visual C++ and Microsoft Visual Basic
can develop web browsers. We use Microsoft
Visual Basic 6.0 to build an experimental web
browser, and the pre-refresh function and perfor-
mance evaluation functions are implemented in
that browser. Actually it is not for applications for
mobile handheld devices. However we think it does
not matter to our experiment, because the proposed
mechanism mainly concentrates on the browser
cache and the pre-refresh function. This simulator
has 512KB cache and runs in the notebook
computer with 133MHz Intel Pentium CPU and
10Mbps Ethernet LAN to emulate a mobile hand-
held device. Since this computer's CPU speed and
network speed is very close to the hardware
performance of mobile handheld devices (especially
close to PDA), we expect that the result with real
mobile handheld devices will be very similar to our
exberiment result. Fig. 4 shows a snapshot of the
experimental web browser. With this experimental
web browser, we will do some web browsing
enough time for the proposed method to be effective.

4.3 The Implementation of the Simulator

The experimental browser for simulation uses
the cache directory of Microsoft Internet Explorer
named ‘Temporary Internet Files' in Microsoft
Windows 98. Although this cache directory does
not contain reference number attribute designed
for the cached HTML documents and we can not
modify it to contain this attribute because it is good
cache enough to simplify our experiment.

In order to implement the proposed mechanism,

An Effective Pre-refresh Mechanism for Embedded Web Browser of Mobile Handheld Devices 1761

elsloBla)

Address;
ghllp ‘wwww, microsoft. com/

Product Families
Windows

Office

Business Solutions

Fig. 4. A sample image of the experimental web
browser.

we created two separate access tables and used
them with ‘“Temporary Internet Files’. Furthermore
these two tables contain the fields for performance
analysis, so we can use these fields to get the
performance metrics. Fig. 5 and 6 show the sample
images about these two tables. ‘Pageattributes’
access table shown in Fig. 6 contains access_count
field, which corresponds to reference number of the
proposed mechanism. Hit_rate and miss_rate fields
are the number of times pre-refreshed documents
were hit by user requests under unexpired and
expired condition respectively. If_pre_refreshed
field indicates if the document was pre-refreshed

Fig. 5. The sample image of the ‘number
access table.

|_Inttp://cafe. daun. net/

to calculate hit_rate and miss_rate. ‘Number’ ac-
cess table shown in Fig. 7 is used to obtain the
performance metrics. Total request and total size
fields means the total number of user requests and
cached documents respectively.

Check internet_address field in
the pageattributes table

If contain this address?

Increase Save this address in
access_count by 1 internet_address

))

Update /ast_accessed_time
to the current time

¥ ¥
Give current time to
last_accessed_time

]

Increase fotal_request by 1

i

Increase total size by
the size of that web page

Give the value to page_size

Increase fotal_request with 1

Fig. 7. Flowchart of execution step for manip-
ulating table fields.

When a user inputs an internet address in the
address box of the simple browser or he clicks one
hyperlink in a web page (we assume this internet
address is correct), the browser first downloads the
requested web page to the user, then executes the
process shown in Fig. 7 to modify the value of
some fields in the tables.

There are some assumptions in manipulating
table fields. For simplicity, we used the average

I http: //kamoh. lnmoh, ac. Jor/home2000/
| Ihttp://news. sohu. con/ i

- http:/fwewn

. chosun. com/

L 0em1-
02-11-11
02-11-11

. http: /fwww
http:/fwww
http: /fww
http:/fwww,

embedded. com/
. google. co. kr/

'da‘m»nu; [

o Oz-11-11 13;
o2-11-13
02-11-11

02-11-11

http://www. linuxdevi ces. com/ 02-11-11

[nttp: f/wwe mierosoft. conf L0z-11-11 13
http://www. microwindows, orgf 02-11-11

o {http:/fwww. sina con/ 02-11-11 13:13;14; e
http://www. sohu. con/ . 027L1-11 13:11:28 -1
http://www. yshoo con/ 02-11-11 13:12:01 -1

cooivooioio ~ooioo:
00000 000 00~

Fig. 6. The sample image of the ‘pageattributes’ access table.

1762 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 7, NO. 12, DECEMBER 2004

size of HTML documents instead their actual size
in our experiment. The total size of 1058 HTML
documents is 21.3MB. So the average size is
20.13KB. We used this value as the value of the
field page_size for every cached HTML document.
This assumption is thought to be sound because
the difference in the size of documents is trivial
in our experience. In addition, we found the size
of main web pages in most commercial web site
does not change too much. So we decided to use
the fixed value of page_size in this simulation;
without this simplification, the simulation would
produce a better result.

We designed cache memory of 512KB and use
the Least Frequent Used (LFU) removal algorithm
to remove cached HTML documents. When every
request is finished, we compute the value of
total_size field, and check its size. When total_size
exceeds 512KB, the program first sorts all internet
addresses using access_count field in the de-
scending order, and deletes one location at the end
of sort. Because of the assumption on the size of
cached HTML document, we did not use page_size
field as the second index for sorting. However, in
the real browser environment, it must be used.

In the pre-refresh function, 10 seconds was used
as the idle time judge condition as we mentioned
in Section 3.2, In programming, we use three ‘timer
controls’ for starfing and stopping the pre-refresh
function. When the browser finishes processing the
user request, the user will begin to read the web
document. During the idle time, the browser ex-
ecutes the process shown in Fig. 8.

During pre-refreshing, the browser first selects
one internet address with the maximum access_
count and the minimum page_size and checks if
it is fresh. If it expires, then it will be pre~
refreshed. After one pre-refresh process is fin—
ished, the corresponding last_accessed_time will be
modified to the current time and the corresponding
if_pre_refreshed is modified to true. If there is no

user request, the next pre-refresh process will

no ave user reque’ es
during idle time2.

Start pre-refresh function

es ave user reque no
thring pre-refreshing

Until alt cached
HTML documents are
pre-refreshed

)

Wait for user request

Serve user request

Stop pre-refresh function
and serve user request

Fig. 8. Flowchart of execution step for pre-
refresh function.

start.

Finally, the browser manipulates hit_rate and
miss_rate fields as follows. When a user inputs an
internet address in the address box of the browser
or he clicks one hyperlink in a web page, if the
requested web page has been already cached ago,
the browser will do the process shown in Fig. 9.

The flowchart shows that the browser first
checks if the cached HTML document was pre-
refreshed before a user’s request. Then it checks
if the document was expired. If no, we will increase
hit_rate by 1 and present it to the user; otherwise,

we will increase miss_rate by 1 and refresh it.

Present to user

Increase hit_rate
by 1

increase miss_rata
by 1

Refresh
this web page

])

Set if_pra_refreshiad
as false

this web page
Fig. 9. Flowchart for manipulating hit _rate and
miss_rate fields.

Present to user I

4.4 Performance Analysis and Evaluation

After the experiment there were 1,008 HTML
documents in the cache and their total size was
21.3MB. The result of performance metrics shows
that ‘request savings' has the value 23.16%,
‘wasted bandwidth’ has the value 47.35%. That is
to say, 23.16% of user requests could be responded

An Effective Pre-refresh Mechanism for Embedded Web Browser of Mobile Handheid Devices 1763

instantly without being refreshed owing to the
proposed pre-refresh method. If we assume x
percent of user requests can be responded instantly
owing to the cache in the existing web browser,
100-x (>23.16) percent of user request have to be
refreshed in that browser. However, with the
proposed method, since additional x percent of user
requests can be responded instantly by nature, x+
23.16 percent of user requests can be responded
instantly in total and 76.84-x (> miss rate, namely
47.35) percent of user request still have to be
refreshed. Since refresh time of web documents is
much larger than reading time of web documents
in the cache, total service times of user requests
with the existing method and the proposed method
are approximately (100-x)t- and (76.84-x)t- re-
spectively, where t- is the mean refresh time of a
web document. Therefore, we can say that the
service time of user requests with the proposed
method is 23.16% ~41.82% less than that with the
existing method because the value of x ranges from
0 to 29.49 due to the above conditions. This result
could be improved if we use larger memory
because hit_rate would be increased with larger
memory.

The value of ‘wasted bandwidth’ is somewhat
high but it does not matter. As we explained in
Section 4.1, without the proposed method, these
network bandwidth and CPU process ability may
be also wasted during the idle time. In order to
decrease this metric value we have to reduce the
idle time judgment condition to less than 10
seconds. Such an adjustment of the idle time
judgment condition would probably increase the
other metric, ‘request savings'. However it would
also increase the processing time of the proposed
method and thus may disturb instant serving user
requests. Therefore, we think that 10 second is a
reasonable condition for the idle time judgment. A
possible problem of the proposed method is that the
processing of the proposed pre-refresh method
might interfere with smooth operation of some
background processes when those background
processes utilize most of CPU computing power.

However, that condition is not likely to happen
because mobile handheld device's users practically
do not want such heavy background processes to
bother web browsing.

5. CONCLUSIONS AND FUTURE WORK

Today, more and more internet population use
mobile handheld devices to access the World Wide
Web. But users spend a lot of time impatiently
waiting for web pages to come up on screen. In
this paper, we proposed an effective pre-refresh
mechanism for mobile handheld device’s embedded
web browser. The proposed mechanism uses the
idle time of users’ reading web pages to pre-
refresh cached HTML documents in the embedded
web browser. The simulation shows that it con-
siderably reduces the latency for users during web
surfing.

Although this mechanism has been aimed pri-
marily at mobile handheld device’s embedded web
browser, we believe that it may also be appropriate
for desktop PC’s Browser. The following work will
be done for further study.

@ This mechanism will be practically imple-
mented in the open source embedded web browser
in order to evaluate its performance in the real
environment.

¢ Other good performance metrics may be de-
signed and more traces will be used to evaluate
the performance of the proposed mechanism more
accurately.

e Other techniques may be merged with the
proposed mechanism to more reduce latency for

users.

6. REFERENCES

[1] Li Fan, Pei Cao, and Quinn Jacobson, Web
Prefetching Between Low-Bandwidth Clients
and Proxies: Potential and Perfromance, In—
ternational ACM Conference on Measurement
and Modeling of Computer System, pp. 178-

1764 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 7, NO. 12, DECEMBER 2004

187, 1999.

[2] Jeffrey C. Mogul, Fred Douglis, Anja Feldmann,
and Balachander Krishnamurthy, Potential
benefits of delta encoding and data for http,
In Proc. of ACM SIGCOMM'97, Aug. 1997.

[3] Jeffrey C. Mogul, What is HTTP Delta
Encoding, Available at “http://webreference.
com/internet/software/servers/http/deltaenco
ding/intro/”, 2002.

[41 Henrik Frystyk Nielsen, Jim Gettys, Anselm
BairdSmith, Eric Prudhommeaux, Hakon Wium
Lie, and Chris Lilley, Network performance
effects of http/1.1, In Proc of ACM
SIGCOMM’97, Aug. 1997.

[5] R.Fielding, J.Gettys, J.Mogul, H.Frystyk, and
T Berners-Lee, Network performance effects
of http/1.1, Hypertext Transfer Protocol-
HTTP/1.1, RFC 2068, Jan 1997.

[6] Mark Nottingham, Caching Tutorial for Web
Authors and Webmasters, Available at “http:
//www.mnot.net/cache/docs/”, Feb. 17, 2002.

[7] Md. Ahsan Habib and Marc Abrams, Analysis
of Sources of Latency in Downloading Web
Pages, In Proc. of WebNet 2000, Oct. 2000.

[8] T. M. Kroeger, J. Mogul, and C. Maltzahn,
Digital's Web Proxy Traces, Available at
“hftp://ftp.digital.com/pub/DEC/traces/proxy
/webtraces.html”, Aug. 1996.

[9] Luigi Rizzo, Web Proxy Traces. Available at
“http://info.iet.unipi.it/ luigi/proxytraces/”,
May 1997.

[10] S. Williams, M. Abrams, C. Stanbridge, G.
Abdulla, and E. Fox, Removal Policies in
Network Caches for World-Wide Web Docu-
ments, In Proc. of ACM SIGCOMM 99, 1999.

[11] Century Software Embedded Technologies,
ViewML Brochure, Available at “http://
embedded.centurysoftware.com/documents/i
ndex.php/#cendocs”, 2001.

[12] The Mozilla Organization, Introduction to
Mozilla - A Manual for First Time Users,

Available at “http.//downloads. mozdev.org/
mozmanual/en/mozmanual-version—-1.0.pdf”.

Huagiang Li

He received a B. S. degree in
computer science and engineer—
ing from Harbin Institute of
Technology, China in 2001, and
an M. S. degree in computer
engineering from Kumoh National
Institute of Technology (KIT),
Korea in 2003. He is currently an engineer on mobile
cellular phone systems at China R&D Center of LG
electronics in Peking. His main research interest is
embedded and mobile software.

Young-Hak Kim

He received a B. S. degree in
electronic engineering from KIT
in 1984, and M. S. and Ph. D.
degrees in computer science
from Sogang University, Korea
in 1989 and 1997 respectively.
He was a full-time lecturer in
the Dept. of Computer Science at Republic of Korea
naval Academy from 1989 to 1997, and in the School
of Multimedia at Yosu National University from 1998
to 1999, He returned to KIT in 1999 and is currently
an associate professor in the School of Computer and
Software Engineering (SCSE) at KIT. His current
research interests are parallel algorithms, and
distributed and parallel processing.

Tae-Hyong Kim

He received B.S. and M.S. de-
grees in electronic engineering
from Yonsei University, Korea
in 1992 and in 1995 re-
spectively, and a Ph.D. degree in
electrical and electronic engi-
neering from the same univer—
sity in 2001. He was a postdoctoral fellow at the Schoot
of Information Technology and Engineering at the
University of Ottawa from 2001 to 2002. He is currently
an assistant professor in the SCSE at KIT. His current
research interests are communication software and
protocol engineering, and wireless networks and their

*

e & A‘i@‘%

security.

