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ABSTRACT

In this paper, we propose a method to avoid obstacles that have unstable limit cycles in a chaos trajectory
surface. We assume all obstacles in the chaos trajectory surface have a Van der Pol equation with an unstable
limit cycle. We also show computer simulation results of Arnold equation, Chua’s equation, Hyper-chaos
equation, Hamilton equation and Lorenz chaos trajectories with one or more Van der Pol obstacles.
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| . Introduction

Chaos theory has been drawing a great deal of
attention in the scientific community for almost
two decades. Remarkable research efforts have
been spent in recent years, trying to export
concepts from Physics and Mathematics into
real world engineering applications. Applications
of chaos are being actively studied in such areas
as chaos control [1]-[2], chaos synchronization

and secure/crypto  communication  [3]-[7],
Chemistry [8], Biology [9] and robots and their
related themes [10].

Recently, Nakamura, Y. et al [10] proposed a
chaotic mobile robot where a mobile robot is
equipped with a controller that ensures chaotic
motion and the dynamics of the mobile robot are
represented by an Arnold equation. They applied
obstacles in the chaotic trajectory, but they did
not mention obstacle avoidance methods.
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In this paper, we propose a method to avoid
obstacles using unstable limit cycles in the chaos
trajectory surface. We assume that all obstacles
in the chaos trajectory surface have a Van der
Pol equation with an unstable limit cycle. When
chaos robots meet obstacles among their
arbitrary wandering in the chaos trajectory,
which is derived using chaos circuit equations
such as the Arnold equation, Chua’s equation,
hyper-chaos equation, Hamilton equation or
Lorenz equation, the obstacles reflect the chaos
robots.

Computer simulations also show multiple
obstacles can be avoided with an Armold
equation, Chua’s equation, hyper-chaos equation,
Hamilton equation or Lorenz equation.

II. Chaotic Mobile Robot

2.1. Mobile Robot

As the mathematical model of mobile robots,
we assume a two- wheeled mobile robot as
shown in Fig. 1.

Y

Fig. 1 Two-wheeled mobile robot

Let the linear velocity of the robot V[m/s]
and angular velocity [rad/s] be the input to the
system. The state equation of the four-wheeled
mobile robot is written as follows:

3?1 cosf 0 v
I [Sine OJ(w) 1)
0 01

where (x,y) is the position of the robot and

0 is the angle of the robot..

2.2 Chaos equations

In order to generate chaotic motions for the
mobile robot, we apply some chaos equations
such as an Armmold equation, Chua’s equation
hyper-chaos equation, Hamilton equation or
Lorenz equation.

1) Arnold equation [10]
We define the Arnold equation as follows:

a§1=A sinzg+ C cosz, 2
z,= B sinz, + A cosz,

:£3= C sinz,+ B cosz,

where A, B, C are constants.

2) Chua’s equation

Chua’s circuit is one of the simplest physical
models that has been widely investigated by
mathematical, numerical and experimental
methods. We can derive the state equation of
Chua’s circuit.

= alz,—g(z,)) &)
Ty=T, — Ty T4
T=— [,
where .
1 2n—1

g(z) =m2"_lz+5 by (my_, —mylz+el-lz—cl)
k=1

3) Hyper-chaos equation

Hyper-chaos equation is one of the simplest
physical models that have been widely
investigated by mathematical, numerical and
experimental methods for complex chaotic
dynamic. We can easily make hyper-chaotic
equation by using some of connected N-double
scroll. We can derive the state equation of
N-double scroll equation as followings.

z=aly—h(z)] @

y=T—yYy+z
z=— By
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Where,

2n—1
h(z) =m2n_la:+% E (m,_,—m)lz+cl—lz—¢l)
i=1

In order to make a hyper-chaos, we have
compose to 1 dimensional CNN(Cellular Neural
Network) which are identical two N-double
scroll circuits and then we have to connected
each cell by using unidirectional coupling or
diffusive coupling. In this paper, we used to
diffusive coupling method. We represent the
state equation of x-diffusive coupling and
y-diffusive coupling as follows.

x-diffusive coupling

29=q [y(j) —h(z)9] +D, (201 —220) +4) (5)
)= 50—y 4,0

D=—p0)  j=12,.L

y-diffusive coupling

z.(j)___a[y(i)_h(x)(i)] (6)
y(i)z Z(J') _y(i) +z(i) _*_Dy(z(j‘l) _2.,1;(1) +:l:)
z(j)-:_By(i)’ j=1,2,....L

where, L is number of cell.

4) Hamilton equation

Hamilton equation is one of the simplest
physical models that have been widely
investigated by mathematical, numerical and
experimental methods. We can derive the state
equation of Hamilton equation as follows.

z,= 2, (13- 2} —y}) ?)
z,=12—z,(13-22—¢?)

5) Lorenz equation

The Lorenz equation describes the famous
chaotic phenomenon.

We define the Lorenz equation as follows:

z=o(y—=z) ®)
Y=y —y— T2
z=zy— bz

where ¢ =10,v=28,b=8/3.
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2.3 Embedding of Chaos circuit in the Robot

In order to embed the chaos equation into the
mobile robot, we define and use the Armnold
equation, Chua’s circuit equation, hyper-chaos
equation, Hamilton equation
equation as follows.

and Lorenz

1) Arnold equation

We define and use the following state
variables:
X, = D y + C cos x
x , = D x B sin x
X, = [/
©)

where B, C, and D are constant.

Substituting (1) into (2), we obtain a state

equation on *1, X*:, and *3 as follows:
. = Dv + C cos X,
, = Dv + B sin x
- o (10)

We now design the inputs as follows [10]:

v=A/D
o = C sin x, + B cos x, (11)

Finally, we can get the state equation of the
mobile robot as follows:

A sin

X, = x; + C cos x,

X, = Bsn x, + A4 cos x,

X, = C sin x, + B cos x,

¥ =V cos x,

_ . 12)
y =V sin x,

Equation (12) includes the Arnold equation.

2) Chua’s equation

Using the methods explained in equations
(9)-(12), we can obtain equation (13) with Chua’s
equation embedded in the mobile robot.
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X, = a (x, - g (x,)
X, = x, - x, + x,
“iz:_/sz

Xx = V cos

. . xo 13)
y = ¥V sin X,

Using equation (13), we obtain the embedding
chaos robot trajectories with Chua’s equation.

3) Hyper-chaos equation

Combination of equation (1) and (5) or {6), we
define and use the following state variables (14)
or (15)

z)) (aly?—h(zV]+ D (a0-V— 220+ 5U+ 1))

o 29— 404 0

o4~ - By? (14)
M veosz,

B vsinz,

T, aly?— h(z?]

zy| |29y + 29+ D (590 - 250 4 g6+ 1)

T4 [~ - 6y (15)
: veosz,

v vsing,

Using equation (14) and (15), we obtain the
embedding chaos robot trajectories with
Hyper-chaos equation.

4) Hamilton equation
Combination of equation (1) and (7), we define
and use the following state variables:

3;1 2, (13— —y, )’

:1:'2= 12—x1(13—mf——y3) (16)
z VCOS T,

Yy vsing,

Using equation (16), we obtain the embedding
chaos robot trajectories with Hamilton equation.

5) Lorenz equation
Combination of equation (1) and (8), we define
and use the following state variables:

1 oly—z)

T,| |vz—y—z2)

24 = Ty—bz (17)
VCOSTy
vsinzg

Eq. (17) is including Lorenz equation. The
behavior of Lorenz equation is chaos. We can get
chaotic mobile robot trajectory.

lll. Chaotic Mobile Robot with VDP(Van
der Pol) Obstacle and Mirror Mapping

3.1. VDP obstacle

In this section, we will discuss the mobile
robot’s avoidance of Van der Pol{(VDP) equation
obstacles. We assume the obstacle has a VDP
equation with an unstable limit cycle, because in
this condition, the mobile robot can not move
close to the obstacle and the obstacle is avoided.

In order to represent an obstacle of the mobile
robot, we employ the VDP, which is written as
follows:

z=y
y=(1-y")y—=

(18)

From equation (18), we can get the following
limit cycle as shown in Fig. 2.

)
| 2 aiy
~ i \
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Fig.2 Limit cycle of VDP
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3.2 Mirror mapping

Equations (12) - (17) assume that the mobile
robot moves in a smooth state space without
boundaries. However, real robots move in space
with boundaries like walls or surfaces of targets.
To avoid a boundary or obstacle, we consider
mirror mapping when the robots approach walls
or obstacles using Eq. (18) and (19). Whenever
the robots approach a wall or obstacle, we
calculate the robots’ new position by using Eq.
(18) or (19).

_ [cos@ sinf
A= (sin(;? — cos 9) (18)
1 1 —m2 2m
A —_
1+m( 2m —1+m2) 19

We can use equation (18) when the slope is
infinity, such as # =90, and use equation (19)
when the slope is not infinity.

3.3 Magnitude of Distracting force from the
obstacle
We consider the magnitude of distracting force
from the obstacle as follows:

0.325

D=
(0.2D, + 1) @201

(20)

where Dk is the distance between each

effective obstacle and the UAV.
We can also calculate the VDP obstacle
direction vector as follows:

-"3_k — [ Lo~ Y 1)
Yi 0'5(1_310_3/)2(1/0_2/)‘-’”0_"3)
where (zg Y,) are the coordinates of the center

point of each obstacle. Thenwe can calculate the
magnitude of the VDP direction vector (L), the
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magnitude of the moving vector of the virtual
UAV (I) and the enlarged coordinates (I/2L) of
the magnitude of the virtual UAV in VDP

(zy,yy,) as follows:

2 2
L= ZV (xudp +yvdp )
I= /(z? +4?)
_m ve I
=TT YT Lo

(22)

Finally, we can get the Total Distraction

Vector (TDV) as shown by the following
equation.
n D Dy
ky— K
(1- F)a+ =g
219 D, D, 7*
n
D, _ D,_ (23)

=M=

((1— Fo)zﬁ Eyk)

n

Using equations (20)-(23), we can calculate the
avoidance method of the obstacle in the Arnold
equation, Chua’s equation, hyper-chaos ,
Hamilton and Lorenz trajectories with one or
more VDP obstacles.

IvV. Obstacle Avoidance in the Chaotic
Mobile Robot

In this section, we proposed a new obstacle
avoidance method which is according to
dangerous degree with Lorenz equation,
Hamilton equation, hyper-chaos equation.

We have to ensure against robot risk with
distance limit, if there is a dangerous situation
when robots are avoid to obstacle. To do this,
we constrained approach obstacle distance for
the degree of robots.

In Fig. 3, we can see the robot trajectories of
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obstacle avoidance results, (a) Amold robot, (b}
Chua robot, (c) hyper-chaos robot, (d) Hamilton
robot, (e) Lorenz robot trajectories respectively.

{c) Hyper-chaos robot trajectories

{e) Lorenz robot trajectories
Fig 3. Robot trajectory

V. Conclusion

In this paper, we proposed a chaotic mobile
robot, which employs a mobile robot with
Arnold equation, Chua’s equation, Hyper-chaos
equation, Hamilton equation and Lorenz
equation trajectories, and also proposed an
obstacle avoidance method in which we assume
that the obstacle has a Van der Pol equation
with an unstable limit cycle.

We designed robot trajectories such that the
total dynamics of the mobile robots was
characterized by an Arnold equation, Chua’s
equation, Hyper-chaos equation, Hamilton
equation and Lorenz equation and we also
designed the robot trajectories to include an
obstacle avoidance method with fixed obstacle
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and VDP obstacle. By the numerical analysis, it
was illustrated that obstacle avoidance methods
with a Van der Pol equation that has an unstable
limit cycle gave the best performance.
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