Poly(vinyl alcohol) Membranes Containing Sulfonic Acid Groups for Direct Methanol Fuel Cell Application

설폰산기를 함유한 PVA막의 직접 메탄올 연료전지 응용

  • 이영무 (한양대학교 응용화학공학부) ;
  • 이선용 (한양대학교 응용화학공학부)
  • Published : 2004.09.01

Abstract

Crosslinked PVA membranes were achieved by esterification between the hydroxyl groups of PVA and carboxyl group of sulfosuccinic acid (SSA). SSA containing sulfonic group was used as a chemical crosslinking agent as well as a donor of fixed anionic group ($-SO_3$H). The crosslinking density of membranes was controlled by SSA content and calculated using polar and non-polar solvent. The crosslinking density measured by using non-polar solvent such as xylene and benzene increases with SSA content. However, using the polar solvent such as water and methanol, the crosslinking density increases up to SSA content of 20 wt% and above the content decrease due to sulfonic acid groups. The crosslinked PVA membranes were studied in relation with water diffusion coefficient and mechanical property as well as proton conductivity and methanol permeability as a function of crosslinking density. These properties were all dependent on the effect of SSA content.

본 연구에서는 polyvinylalcohol(PVA)의 hydroxyl 작용기와 sulfosuccinic acid (SSA)의 carboxylic acid 작용기의 반응을 통하여 열가교된 PVA막을 제조하였다. 설폰산기를 함유한 SSA는 PVA 매트릭스에 대한 가교제의 역할뿐만 아니라 수소이온의 전도도를 높이는 역할 모두를 수행하였다. PVA의 가교도(degree of crosslinking)는 SSA의 함량으로 조절하였고 가교밀도(crosslinking density)는 극성 및 비극성 용매를 이용하여 계산하였다. Xylene 및 benzene과 같은 비극성 용매를 사용한 경우 가교밀도는 SSA함량에 따라 증가하였다. 그러나, 물과 methanol과 같은 극성 용매를 사용한 경우 가교밀도는 SSA함량 20%까지 증가하다가 그 이상의 함량에서는 설폰산기의 영향으로 감소하였다. 가교도와 확산계수, 기계적 물성 및 전도도, 메탄올 투과도 등에 대한 PVA막의 특성을 평가하였고 이들 특성은 SSA함량에 의존하였다.

Keywords

References

  1. J. Larminie and A. Dicks, Fuel cell systems explained, Wiley, New York (2000)
  2. K. Strasser, Mobile fuel cell development at Siemens, J. Power Sources. 37, 209 (1992)
  3. S. Surampudi, S. R. Narayanan, E. Vamos, H. Frank, G. Halpert, A. LaConti, J. Kosek, G. Prakash, and G. A. Olah, Advances in direct oxidation methanol fuel cells, J. Power Sources. 47, 377 (1994)
  4. C. Pu, W. Huang, K. L. Ley, and E. S. Smotkin, A methanol impermeable proton conducting composite electrolyte system, J. Electrochem. Soc. 142, 119 (1995)
  5. G. T. Burstein, C. J. Barnett, A. R. Kucernak, and K. R. Williams, Aspects of the anodic oxidation of methanol, Catal. Today 38, 425 (1998)
  6. Y. Woo, S. Y. Oh, Y. S. Kang, and B. Jung, Synthesis and characterization of sulfonated polyimide membranes for direct methanol fuel cell J. Membr. Sci. 220, 31-45 (2003)
  7. B. S. Pivovar, Y. Wang, and E. L. Cussler, Pervaporation membranes in direct methanol fuel cells, J. Membr. Sci. 154, 155-162 (1999)
  8. J. Kerres, A. Ullrich, F. Meier, and T. Haring, Synthesis and characterization of novel acid-base polymer blends for application in membrane fuel cell, Solid State Ionics 125, 243 (1999)
  9. W. Zhang, G. Dai, and J. Kerres,: Synthesis of cross-linked poly(sulfone) ion exchange membranes, Acta Polym. Sin. 5, 608 (1998)
  10. CA. Finch, Poly(vinyl alcohol), 2nd ed. New York: Wiley (1992)
  11. NA. Peppas, Hydrogel in medicine and pharmacy, vol.1. Boca Raton, FL: CRC Press (1986)
  12. W. Y. Chuang, T. H. Young, W. Y. Chiu, and C. Y. Lin, The effect of polymeric additives on the structure and permeability of poly(vinyl alcohol) asymmetric membranes, Polymer. 41, 5633-5641 (2000)
  13. M. Nagura, T. Hamano, and H. Ishikawa, Structure of poly(vinyl alcohol) hydrogen prepared by repeated freezing and melting, Polymer 30, 762-765 (1989)
  14. J. W. Rhim, S. W. Lee, and Y. K. Kim, Pervaporation separation of water-ethanol mixtures using metal-ion-exchanged poly(vinyl alcohol) (PYA)/sulfosuccinic acid (SSA) membranes, J. Appl. Polym. Sci. 85, 1867-1873 (2002)
  15. J. W. Rhim, C. K. Yeom, and S. W. Kim, Modification of poly(vinyl alcohol) membranes using sulfur-succinic acid and its application to pervaporation separation of water-alcohol mixtures, J. Appl. Polym. Sci. 68, 1717-1723 (1998)
  16. J. W. Rhim and Y. K. Kim, Pervaporation separation of MTBE-methanol mixtures using crosslinked PYA membranes, J Appl. Polym. 75, 1699-1707 (2000) https://doi.org/10.1002/(SICI)1097-4628(20000401)75:14<1699::AID-APP3>3.0.CO;2-O
  17. E. EI. Shafee and H. F. Naguib, Water sorption in cross-linked poly(vinyl alcohol) networks, Polymer. 44, 1647-1653 (2003)
  18. J. W. Rhim, H. B. Park, C. S. Lee, J. H. Jun, D. S. Kim, and Y. M. Lee, Crosslinked poly(vinyl alcohol) membranes containing sulfonic acid group: Proton and methanol transport through membranes, J. Membr. Sci. 238, 143-151 (2004)
  19. S. Desai, I. M. Thakore, and S. Devi, Effect of crosslink density on transport of industrial solvents through polyether based polyurethanes, Polymer Inter. 47, 172-178 (1998)
  20. C. Genies, R. Mercier, B. Sillion, P. Petiaud, N. Comet, G. Gebel, and M. Pineri, Stability study of sulfonated phthalic and naphthalenic polyimide structures in aqueous medium, Polymr, 42, 5097-5105 (2001)
  21. A. Tager, Physical chemistry of polymers, Mir, Moscow (1972)
  22. J. Brandrup and E. H. Jmmerjat (Eds.), Polymer Handbook, Wiley, New York, p. 1175 (Section Yll) (1989)
  23. R. F. Fedors, Absorption of liquids by rubber vulcanizates, Polymer, 20, 1087-1090 (1979)
  24. C. E. Bogers. In: Comyn, J, editor. Polymer permeability. London: Elsevier Applied Science Publishers p. 11 (1985)