DOI QR코드

DOI QR Code

Effect of Doping Amounts of Al2O3 and Discharge Power on the Electrical Properties of ZnO Transparent Conducting Films

ZnO 투명 전도막의 전기적 특성에 미치는 Al2O3 의 도핑 농도 및 방전전력의 효과

  • 박민우 (경성대학교 신소재공학과) ;
  • 박강일 (경성대학교 전기전자공학부) ;
  • 김병섭 (경성대학교 전기전자공학부) ;
  • 이세종 (경성대학교 신소재공학과) ;
  • 곽동주 (경성대학교 전기전자공학부)
  • Published : 2004.05.01

Abstract

Transparent ZnO:Al conductor films for the optoelectronic devices were deposited by using the capacitively coupled DC magnetron sputtering method. The effect of Al doping concentration and discharge power on the electrical and optical properties of the films was studied. The film resistivity of $8.5${\times}$10^{-4}$ $\Omega$-cm was obtained at the discharge power of 40 W with the ZnO target doped with 2 wt% $Al_2$$_O3$. The transmittance of the 840 nm thick film was 91.7% in the visible waves. Increasing doping concentration of 3 wt% $Al_2$$O_3$ in ZnO target results in significant decrease of film resistivity, which may be due to the formation of $Al_2$$O_3$ particles in the as-deposited ZnO:Al film and the reduced ZnO grain sizes. Increasing DC power from 40 to 60 W increases deposition rate by more than 50%, but can induce high defect density in the film, resulting in higher film resistivity.

Keywords

References

  1. D. G. Hwang, G. H. Bang and J. M. Myung, Bulletin of Korea Institute of Electrical and Electronic Material Engineers, 15(6), 35 (2002)
  2. Ch. Sujatha, G. Mohan Rao and S. Uthanna, Materials Science and Engineering B, 94, 106 (2002) https://doi.org/10.1016/S0921-5107(02)00090-9
  3. W.-J. Jeong and G.-C. Park, Solar Energy Material & Solar Cells, 65, 38 (2001) https://doi.org/10.1016/S0927-0248(00)00075-1
  4. J. D. Lee and J. T. Song, J. Korea Institute of Electrical and Electronic Material Engineers, 9(2), 199 (1996)
  5. K. I. Park, B. S. Kim, D. G. Lim and D. J. Kwak, Proceeding of the KIEEME(in Korean) Annual Summer Conference, 4(1), 143 (2003)
  6. K.-I. Park, B.-S. Kim, D.-G. Lim and D.-J. Kwak, Proceeding of the KIEE Summer Annual Conference 2003, C, 1430 (2003)
  7. Y. Igasaki and H. Kanma, Applied Surface Science, 169-170, 508 (2001) https://doi.org/10.1016/S0169-4332(00)00748-0
  8. R. Tueta and M. Braguier, Thin Solid Films, 80(1), 143 (1981) https://doi.org/10.1016/0040-6090(81)90216-9
  9. W.-J. Jeong and G.-C. Park, Solar Energy Material & Solar Cells, 65, 38 (2001) https://doi.org/10.1016/S0927-0248(00)00075-1
  10. C. L. Fan and M. N. Rahaman, J. Am. Ceram. Soc., 75, 2056 (1992) https://doi.org/10.1111/j.1151-2916.1992.tb04465.x
  11. R. S. Smith, J. Appl. Phys., 27, 824 (1956) https://doi.org/10.1063/1.1722491
  12. U-S. Choi, B.-M. So and J.-W. Hong, Journal of Korean Institute of Electrical and Electronic Material Engineers, 9(6), 572 (1996)