DOI QR코드

DOI QR Code

Effects of MnO2on the Piezoelectric Properties of PMN-PZT-based Ceramics

PMN-PZT계 세라믹스의 압전특성에 미치는 MnO2의 영향

  • 김재창 (충주대학교 신소재공학과/나노기술연구소) ;
  • 황동연 (충주대학교 신소재공학과/나노기술연구소) ;
  • 이미영 (충주대학교 신소재공학과/나노기술연구소) ;
  • 유신욱 (충주대학교 신소재공학과/나노기술연구소) ;
  • 김영민 (고려전자(주) 소재개발과) ;
  • 어순철 (충주대학교 신소재공학과/나노기술연구소) ;
  • 김일호 (충주대학교 신소재공학과/나노기술연구소)
  • Published : 2004.05.01

Abstract

Perovskite PMN-PZT-based ceramics were prepared and the$ MnO_2$ doping effects on their piezoelectric properties were investigated. Grain size decreased with increasing the $MnO_2$ content, and the pyrochlore phase was not identified in the sintered PMN-PZT ceramics with 0.01~1.0wt% $MnO_2$. Piezoelectric voltage and charge constants were reduced and mechanical quality factor increased with increasing the $MnO_2$ content. However, electromechanical coupling coefficient slightly decreased with increasing the MnO$_2$ content without regard to the grain size.

Keywords

References

  1. R. F. Zhang, J. Ma, L. B. Kong, Y. Z. Chen and T. S. Zhang, Mater. Lett., 55(6), 388 (2002) https://doi.org/10.1016/S0167-577X(02)00398-1
  2. C. O. Paiva-Santos, C. F. Oliveira, W. C. Las, M. A. Zaghete, J. A. Varela and M. Cilense, Mater. Res. Bull., 35(1), 15 (2000) https://doi.org/10.1016/S0025-5408(00)00192-6
  3. Z. Brankovi, G. Brankovic, C. Jovalekic, Y. Maniette, M. Cilense and J. A. Varela, Mater. Sci. Eng. A, 345(1-2), 243 (2003) https://doi.org/10.1016/S0921-5093(02)00475-6
  4. S. Y. Chu, T. Y. Chen and I. T. Tsai, Mater. Lett., 58(5), 752 (2004) https://doi.org/10.1016/j.matlet.2003.07.004
  5. W. L. Zhong, Y. G. Wang, S. B. Yue and P. L. Zhang, Solid State Comm., 90(6), 383 (1994) https://doi.org/10.1016/0038-1098(94)90804-4
  6. V. Koval, C. Alemany, J. Brianin, H. Brunckova and K. Saksl, J. Europ. Ceram. Sci., 23(7), 1157 (2003) https://doi.org/10.1016/S0955-2219(02)00281-9
  7. T. Hayashi, J. Tomizawa, T. Hasegawa and Y. Akiyam, J. Europ. Ceram. Soc., 24(6), 1037 (2004) https://doi.org/10.1016/S0955-2219(03)00497-7
  8. J. Long, H. Chen and Z. Meng, Mater. Sci. Eng. B, 99(1-3), 445 (2003) https://doi.org/10.1016/S0921-5107(02)00455-5
  9. A. S. Khim, J. Wang and X. Junmin, J. Alloys Comp., 311(2), 181 (2000) https://doi.org/10.1016/S0925-8388(00)01117-8
  10. J. Wang, D. M. Wan, J. M. Xue and W. B. Ng. J. Am. Ceram. Soc., 82, 477 (1999) https://doi.org/10.1111/j.1551-2916.1999.tb20091.x
  11. W. Qiu and H. H. Hng, Mater. Chem Phy., 75(1), 151 (2002) https://doi.org/10.1016/S0254-0584(02)00045-7
  12. B. Malic, M. Kosec and G. Drazic, J. Europ. Ceram. Soc., 24(2), 475 (2004) https://doi.org/10.1016/S0955-2219(03)00203-6
  13. S.-Y. Chena, C.-M. Wangb and S.-Y. Cheng, Mater. Chem. Phy., 49(1), 70 (1997) https://doi.org/10.1016/S0254-0584(97)80131-9
  14. L.-X. He, M. Gao, C.-E. Li, W.-M. Zhu and H.-X. Yan, J. Europ. Ceram. Soc., 21(6), 703 (2001) https://doi.org/10.1016/S0955-2219(00)00256-9
  15. IRE standards on piezoelectric crystals: measurements of piezoelectric ceramics, Proc. IRE, 49, 1161 (1961) https://doi.org/10.1109/JRPROC.1961.287860
  16. T. Kamiya, T. Susuki and T. Tsurumi, Jpn. J. Appl. Phys., B, 31(9), 3058 (1992) https://doi.org/10.1143/JJAP.31.3058
  17. O. Perez, J. M. Saniger, A. Pelaiz and F. Calderon, J. Mater. Res., 41(7), 3083 (1999) https://doi.org/10.1557/JMR.1999.0413
  18. L.-X. He and C.-E. Li, J. Mater. Sci., 35, 2477 (2000) https://doi.org/10.1023/A:1004717702149
  19. A. P. Barranco, F. C. Pinara, P. Martinez and E. T. Garcia, J. Europ. Ceram. Soc., 21(4), 523 (2001) https://doi.org/10.1016/S0955-2219(00)00216-8