DOI QR코드

DOI QR Code

Synthesis of Si3N4 from Domestic Silica-stone by Direct Nitriding Method

규석광으로부터 직접 질화법에 의한 질화규소의 합성

  • 손용운 (한국지질연구원 자원활용소재연구부) ;
  • 주성민 (단양석회석신소재연구재단 연구개발실) ;
  • 정헌생 (한국지질연구원 자원활용소재연구부)
  • Published : 2004.05.01

Abstract

$Si_3$$N_4$ ceramics have been identified as one of the promising structural ceramics. This study has been carried out to investigate of the synthetic behaviors of $Si_3$$N_4$ derived from domestic silica-stone by direct nitriding method. The silicon nitridation reaction has been studied in the temperature range of $1300~1550^{\circ}C$. Below the $1400^{\circ}C$, the nitriding rate was measured to be 16%. For the temperatures higher than the $1400^{\circ}C$, $\beta$-$Si_3$$N_4$ phase was formed mainly, and the nitriding rate showed above 98%. With the increasing of sample weight of silicon powder, the nitriding rate and $\beta$-$Si_3$$N_4$ phase increased at $1400^{\circ}C$ for 2 hours. The shape and particle size of$ Si_3$$N_4$ powder synthesized at $1400^{\circ}C$ for 2 hours showed the irregular angular-type and 10 $\mu\textrm{m}$, respectively.

Keywords

References

  1. J. F. Yang, G. T. Zhang, N. Kondo and T. Ohji, Acta Mater., 50, 4831 (2002) https://doi.org/10.1016/S1359-6454(02)00350-6
  2. R. M. Souza, H. N. Yoshimura, C. Xavier and H. Goldenstein, Key Eng. Mater., 439, 127 (1997) https://doi.org/10.4028/www.scientific.net/KEM.127-131.439
  3. R. Klein, V. Medri, M. Desmaison-Brut, A. Bellosi and J. Desmaison, J. Eur. Ceram. Soc., 23, 603 (2003) https://doi.org/10.1016/S0955-2219(02)00376-X
  4. M. J. Hoffmann and G. Petzow, Mater. Res. Soc. Proc., 287, 3 (1993)
  5. G. W. Meetham, J. Mat. Sci., 26, 853 (1991) https://doi.org/10.1007/BF00576759
  6. N. Kondo, Y. Suzuki, J. F. Yang, G. J. Zhang and T. Ohji, J. Mater. Sci. Lett., 20, 461 (2001) https://doi.org/10.1023/A:1010971018713
  7. Y. Inagaki, T. Ohji, S. Kanzaki and Y. J. Shigegaki, J. Am. Ceram. Soc., 83, 1807 (2000) https://doi.org/10.1111/j.1151-2916.2000.tb01468.x
  8. J. B. Davis, A. Kristoffersson, E. Carlstrom and W. J. Clegg, J. Am. Ceram. Soc., 83, 2369 (2000) https://doi.org/10.1111/j.1151-2916.2000.tb01563.x
  9. V. Y. Petyrovsky and Z. S. Pak, J. Eur. Ceram. Soc., 21, 237 (2001) https://doi.org/10.1016/S0955-2219(00)00199-0
  10. B. Y. Shew and J. L. Huang, Mat. Sci. Eng., A, 159, 127 (1992) https://doi.org/10.1016/0921-5093(92)90406-Q
  11. T. Nagaoka, M. Yasuoka, K. Hirao and S. Kanzaki, J. Ceram. Soc. Jpn., 100, 617 (1992) https://doi.org/10.2109/jcersj.100.617
  12. S. Shimada and T. Kataoka, J. Am. Ceram. Soc., 84, 2442 (2001) https://doi.org/10.1111/j.1151-2916.2001.tb01031.x
  13. K. Komeya and H. Inoue, J. Mat. Sci., 10, 1243 (1975) https://doi.org/10.1007/BF00541410
  14. K. S. Mazdiyasni and C. M. Cooke, J. Am. Ceram. Soc., 56, 628 (1973) https://doi.org/10.1111/j.1151-2916.1973.tb12440.x
  15. G. M. Crosbie, Ceram. Eng. Sci. Proc., 7, 1144 (1986) https://doi.org/10.1002/9780470320358.ch6