DOI QR코드

DOI QR Code

Preparation and Luminescent Properties of LaPO4:Re (Re=Er, Yb) Nanoparticles

희토류 이온(Er/Yb)이 도핑된 LaPO4 나노입자의 합성과 발광특성

  • 오재석 (한국화학연구원 화학소재연구부) ;
  • 이택혁 (배재대학교 화학과) ;
  • 석상일 (한국화학연구원 화학소재연구부) ;
  • 정하균 (한국화학연구원 화학소재연구부)
  • Published : 2004.04.01

Abstract

Due to the luminescence by$ Er ^{ 3+}$ activator, Er-doped $LaPO_4$ powders can be applied for optical amplification materials. In this study, $LaPO_4$:Er nanoparticles were synthesized in solution system using a high-boiling coordinating solvent and their properties were investigated through various spectroscopic techniques. The nanoparticles were to take a single phase of monazite structure by a X-ray diffraction analysis and to have the 5-6 nm of particles size with narrow size distribution by a TEM. And it was confirmed by the EA and FT-IR analyses that the surfaces of nanoparticles are coordinated with the solvent molecules, which will possibly keep from agglomerating between LaPO$_4$:Er nanoparticles. In the emission spectrum of $LaPO_4$:Er nanoparticle at NIR region, on the other hand, it was measured that the emission intensity is very weak, which is due to the transition from $^4$$I_{(13/2)}$ to $^4$$I_{(15/2)}$ of $Er^{3+ }$ion. It was interpreted that the weak luminescence of $LaPO_4$:Er is originated from the hydroxyl groups adsorbed on the surfaces of the nanoparticles, because OH group acts as an efficient quencher for the $^4$$I_{(13/2)}$ \longrightarrow $^4$$I_{(15/2)}$ emission of $Er^{3+}$ activator. But the co-doping of Yb$^{3+}$ as a sensitizer in this nanoparticle results in the increase of the emission intensity at 1539 nm due to the effective energy transfer from $Yb^{3+}$ to $Er^{3+}$ . In addition, the synthesized nanoparticles exhibited good dispersibility with some polymers and effective luminescence at NIR region.n.

Keywords

References

  1. W. J. Miniscalco, J. Lightwave Tech., 9(2), 234 (1991) https://doi.org/10.1109/50.65882
  2. K. H. Oh, A. Kilian and T. F. Morse, J. Non-Cryst. Solid, 259, 10 (1999) https://doi.org/10.1016/S0022-3093(99)00491-3
  3. X. Orignac, D. Barbier, X.M. Du, R. M. Almeida, O. McCarthy and E. Yeatman, Optic Mater., 12, 1 (1999) https://doi.org/10.1016/S0925-3467(98)00076-7
  4. R. M. Almedia, X. M. Du, D. Barbier and X. Orignac, J. Sol-Gel Sci. Tech., 14, 209 (1999) https://doi.org/10.1023/A:1008794202103
  5. A. Martucci, G. Brusatin, M. Guglielmi, C. Strohhefer, J. Fick, S. Pelli and G. C. Righini, J. Sol-Gel Sci. Tech., 13, 535 (1998) https://doi.org/10.1023/A:1008618621828
  6. R. R. Goncalves, G. Carturan, L. Zampedri, M. Ferrari, A. Chiasera, M. Montagna, G. C. Righini, S. Pelli, S. J. L. Ribeiro and Y. Messaddeq, J. Non-Cryst, Solid, 322, 306 (2003) https://doi.org/10.1016/S0022-3093(03)00220-5
  7. A. J. Kenyon, Current Opinion in Solid State and Materials Science, 7, 143 (2003) https://doi.org/10.1016/S1359-0286(03)00043-3
  8. B. M. Tissue, Chem. Mater., 10, 2837 (1998) https://doi.org/10.1021/cm9802245
  9. D. F. Mullica, W. O. Milligan, D. A. Grossie, G. W. Beall and L. A. Boatner, Inorg. Chim. Acta, 95, 231 (1984) https://doi.org/10.1016/S0020-1693(00)87472-1
  10. J. Dexpert-Ghys, R. Mauricot and M. D. Faucher, J. Lumin., 69, 203 (1996) https://doi.org/10.1016/S0022-2313(96)00094-4
  11. U. Rambabu, N. R. Munirathnam, T. L. Prakash and S. Buddhudu, Mater. Chem. Phys., 78, 160 (2002) https://doi.org/10.1016/S0254-0584(02)00294-8
  12. Y. C. Kang, E. J. Kim, D. Y. Lee and H. D. Park, J. Alloys & Compd., 347(1-2), 266 (2002) https://doi.org/10.1016/S0925-8388(02)00747-8
  13. H. Meyssamy, K. Riwotzki, A. Komowski, S. Naused and M. Haase, Adv. Mater., 11, 840 (1999) https://doi.org/10.1002/(SICI)1521-4095(199907)11:10<840::AID-ADMA840>3.0.CO;2-2
  14. M. Haase, K. Riwotzki, H. Meyssamy and A. Kornowski, J. Alloys & Compd., 303-304, 191 (2000) https://doi.org/10.1016/S0925-8388(00)00628-9
  15. K. Riwotzki, H. Meyssamy, A. Kornowski and M. Haase, J. Phys. Chem. B, 104, 2824 (2000) https://doi.org/10.1021/jp993581r
  16. K. Riwotzki, H. Meyssamy, H. Schnablegger, A. Kornowski and M. Haase, Angew. Chem. Int. Ed., 40(3), 573 (2001) https://doi.org/10.1002/1521-3773(20010202)40:3<573::AID-ANIE573>3.0.CO;2-0
  17. G. A. Hebbink, J. W. Stouwdam, D. N. Reinhoudt and F. C. J. M. van Veggel, Adv. Mater., 14(16), 1147 (2002) https://doi.org/10.1002/1521-4095(20020816)14:16<1147::AID-ADMA1147>3.0.CO;2-0
  18. L. H. Slooff, A. Polman, S. I. Klink, G. A. Hebbink, L. Grave, F. C. J. M. van Veggel, D. N. Reinhoudt and J. W. Hofstraat, Optic. Mater., 14, 101 (2000) https://doi.org/10.1016/S0925-3467(99)00119-6
  19. Y. Yan, A. J. Faber and H. D Waal, J. Non-Cryst. Solid, 181, 283 (1995) https://doi.org/10.1016/S0022-3093(94)00528-1
  20. L. Zhang and H. de Hu, J. Phys. Chem. Solid, 63, 575 (2002) https://doi.org/10.1016/S0022-3697(01)00196-2
  21. A. Chiasera, C. Tosello and E. Moser, M. Montagna, R. Belli, R. R. Goncalves, G. C. Righini, S. Pelli, A. Chiappini, L. Zampedri and M. Ferrari, J. Non-Cryst. Solid, 322, 289 (2003) https://doi.org/10.1016/S0022-3093(03)00217-5
  22. C. Strohhefer and A. Polman, Optic. Mater., 21, 705 (2003) https://doi.org/10.1016/S0925-3467(02)00056-3
  23. C. Strohhefer, J. Fick, H. C. Vasconcelos and R. M. Almeida, J. Non-Cryst, Solid, 226, 182 (1998) https://doi.org/10.1016/S0022-3093(98)00365-2
  24. S. K. Jeon and P. V. Braun, Chem. Mater., 15, 1256 (2003) https://doi.org/10.1021/cm0207402