DOI QR코드

DOI QR Code

Characterizations of Photo-Oxidative Abilities of Nanostructured TiO2 Powders Prepared with Additions of Various Metal-Chlorides during Homogeneous Precipitation

균일침전시 여러 가지 금속염화물들을 첨가하여 제조된 TiO2 나노 분말들의 광산화 능력 평가

  • 황두선 (세종대학교 나노기술연구소/나노공학과) ;
  • 이남희 (세종대학교 나노기술연구소/나노공학과) ;
  • 이희균 (한국산업기술대학교 신소재공학과) ;
  • 김선재 (세종대학교 나노기술연구소/나노공학과)
  • Published : 2004.04.01

Abstract

Transition metal ions doped $TiO_2$ nanostructured powders were prepared with simply heating aqueous $TiOCl_2$ solutions, contained various metal ions (Ni, Al, Fe, Zr, and Nb) of 1.47 mol% added as metal-chlorides, at $100^{\circ}C$ for 4 hrs by homogeneous precipitation process under suppressing conditions of water vaporization. The characterizations for prepared $TiO_2$ powders were carried out to observe doping of metal ions, their concentrations and microstructures using XRD, UV-VIS (DRS), XPS, SEM, TEM and ICP. Also, photo-oxidative abilities were evaluated by decomposition of 4-chlorophenol (4CP) under ultraviolet light irradiations. No secondary oxide phases were formed in all the $VTiO_2$ powders, showing doping with various transition metal ions. When adding ions ($Ni^{2+}$ or$ Al^{3+ }$ and $Zr^{4+}$ ) having valance states or ionic radii greatly different from those of $Ti^{4+}$ , the $TiO_2$ powders of mixed anatase and rutile phases were formed, whereas in the case of additions of $^Fe{3+ }$ and $Nb^{ 5+}$ as well as no addition of metal ion the powders with pure rutile phase alone were formed. Among the prepared $TiO_2$ powders, Ni$^{2+}$ doped $TiO_2$ powders, containing a small amount of anatase phase, showed excellent photo-oxidative ability in 4CP decomposition because of relative decreases in electron-hole recombination and poisoning of $TiO_2$ surface during the photoreaction.n.

Keywords

References

  1. J. E. Fredrick, H. E. Snell and E. K. Haywood, J. Photochem. Photobiol. A : Chem., 50, 443 (1989) https://doi.org/10.1111/j.1751-1097.1989.tb05548.x
  2. J.-F. Reber, In Photoelectrochemistry, Photocatalysis and Photoreactors; Schiavello, M., Ed.; Reidel:Dordrecht, Holland, 321 (1985)
  3. F. Y. Sun, M. Wu and W. G. Li, Chin. J. Catal., 19, 229 (1998)
  4. L. Spanhel, H. Weller and A. Henglein, J. Am. Chem. Soc., 109, 6632 (1987) https://doi.org/10.1021/ja00256a012
  5. K. R. Gopidas, M. Bohorquez and P. V. Kamat, J. Phys. Chem., 94, 6435 (1990) https://doi.org/10.1021/j100379a051
  6. K. Takeuchi, S. Murasawa and T. Ibusuki, Published in Japan by Kogyo chosa kai, Tokyo (1998)
  7. H. Yamashita, Y. Ichihashi, M. Takeuchi, S. Kishiguchi and M. Anpo, J. Synchrotron Rad., 6, 451 (1999) https://doi.org/10.1107/S0909049598017257
  8. D. Bpokelmann, R. Goslich and D. Bahnemann, In Solar Thermal Energy Utilization, M. Becker, K.-H. Funken, G. Schneider, Eds.; Springer Verlag GmbH : Heidelberg, 6, 397 (1992)
  9. M. R. Hoffman, S. T. Martin, W. Choi and D. W. Bahnemann, Chem. Rev., 95, 69 (1995) https://doi.org/10.1021/cr00033a004
  10. W. Choi, A. Termin and M. R. Hoffman, J. Phys. Chem., 98, 13669 (1994) https://doi.org/10.1021/j100102a038
  11. S. J. Kim, S. D. Park, Y. H. Jeong, and S. Park, J. Am. Ceram. Soc., 82(4), 927 (1999) https://doi.org/10.1111/j.1151-2916.1999.tb01855.x
  12. S. D. Park, Y. H. Cho, W. W. Kim and S. J. Kim, J. Solid State Chem., 146(1), 230 (1999) https://doi.org/10.1006/jssc.1999.8342
  13. S. J. Kim, H. G. Lee, S. J. Kim, J. K. Lee and E. G. Lee, Applied Catalysis A: General, 242, 89 (2003) https://doi.org/10.1016/S0926-860X(02)00515-X
  14. C. D. Wagner, W. M. Riggs, L. E Davis, J. F. Moulder and G. E. Muilenberg, Handbook of X-ray photoelectron spectroscopy, published in USA by Perkin-Elmer Co., Minnesota (1978)
  15. X. Z. Li, F. B. Li, C. L. Yang and W. K. Ge, J. Photoc. Photobio A, 141, 209 (2001) https://doi.org/10.1016/S1010-6030(01)00446-4
  16. A. P. Hong, D. W. Bahnemann and M. R. Hoffman, J. Phys. Chem., 91, 6245, (1987) https://doi.org/10.1021/j100308a035
  17. A. J. Hoffman, E. R. Carraway and M. R. Hoffman : Environ. Sci. Technol., 28, 776 (1994) https://doi.org/10.1021/es00054a006
  18. M. Anpo, T. Shima, S. Kodama and Y. Kubokawa, J. Phys. Chem., 91, 4305 (1987) https://doi.org/10.1021/j100300a021
  19. K. Fujihara, S. Izumi, T. Ohno and M. Matsumura, J. Photoc. Photobio A, 132, 99 (2000) https://doi.org/10.1016/S1010-6030(00)00204-5
  20. N. Serpone, D. Lawless and R. Khairutdinov, J. Phys. Chem., 99, 16646 (1995) https://doi.org/10.1021/j100045a026
  21. A. Amtout and R. Leonelli, Solid state Commun., 84, 349 (1992) https://doi.org/10.1016/0038-1098(92)90135-V
  22. H. Tang, H. Berger, P. E. Schmid, F. Levy and G. Burri, Solid State Commun., 87, 847 (1993) https://doi.org/10.1016/0038-1098(93)90427-O
  23. H. Tang, K. Prasad, R. Sanjunes, P. E. Schmid, and F. Levy, J. Appl. Phys., 75(4), 2042 (1994) https://doi.org/10.1063/1.356306

Cited by

  1. Phosphors for Benzene Gas vol.50, pp.1, 2013, https://doi.org/10.4191/kcers.2013.50.1.50