DOI QR코드

DOI QR Code

Dynamic Deformation Behavior of Zr-Based Bulk Amorphous Alloy after Annealing Treatments

벌크형 비정질 Zr계 합금의 결정화 열처리에 따른 동적변형 거동

  • 장재준 (부산대학교 재료공학부) ;
  • 이병주 (부산대학교 재료공학부) ;
  • 황진일 (아이엔아이 스틸(주), 포항기술연구소) ;
  • 박익민 (부산대학교 재료공학부) ;
  • 조경목 (부산대학교 재료공학부) ;
  • 조영래 (부산대학교 재료공학부)
  • Published : 2004.03.01

Abstract

The mechanical properties of a bulk amorphous alloy ($Zr_{41.2}$ $Ti_{13.8}$ /$Cu_{10}$ $Ni_{10}$ $Be_{22.5}$ /at.%) before and after an annealing treatment were investigated. For the bulk amorphous alloy, the compressive strength was about 2.0 GPa, irrespective of the strain rates in the range of $10^{-4}$ to $10^3$$ sec^{-1}$ . Fine-sized nanocrystalline particles (10~100 nm) were precipitated homogeneously in the bulk amorphous matrix after the annealing treatments. Compared to the bulk amorphous materials, these composite materials, composed of the nanocrystalline phases and a bulk amorphous matrix had much different mechanical properties. The strength and strain of coposite materials measured by a compressive test showed a peak-maximum values at 7 vol.% of the nanocrystalline phases. The values in higher volume fraction of the crystalline phases in the amorphous matrix were decreased, as measured by both quasi-static and high strain rate. The decrease in fracture strength is due to presence of the dispersed large-crystalline phases in the amorphous matrix.

Keywords

References

  1. H. S. Chen, Rep. Prog. Phys., 33, 353 (1980) https://doi.org/10.1088/0034-4885/43/4/001
  2. A. Inoue, T. Zhang and T. Masumoto, Mater. Trans. JIM., 31, 425 (1990) https://doi.org/10.2320/matertrans1989.31.425
  3. A. Inoue, A. Kato, T. Zhang, S. G. Kim and T. Masumoto, Mater. Trans. JIM., 32, 609 (1991) https://doi.org/10.2320/matertrans1989.32.609
  4. A. Inoue, T. Zhang and T. Masumoto, Mater. Trans. JIM., 36, 391 (1995) https://doi.org/10.2320/matertrans1989.36.391
  5. A. Inoue, T. Shibat and T. Zhang, Mater. Trans. JIM., 36, 1420 (1995) https://doi.org/10.2320/matertrans1989.36.1420
  6. A. Peker and W. L. Johnson, Appl. Phys. Lett., 63, 2342 (1993) https://doi.org/10.1063/1.110520
  7. A. Inoue, N. Nishiyama and T. Masumoto, Mater. Trans. JIM., 37, 181 (1996) https://doi.org/10.2320/matertrans1989.37.181
  8. A . Inoue, Mater. Sci. Eng., A179/A180, 57 (1994) https://doi.org/10.1016/0921-5093(94)90164-3
  9. C. Fang and A. Inoue, Mater. Trans. JIM., 38, 1040 (1997) https://doi.org/10.2320/matertrans1989.38.1040
  10. Q. Wei, T. Jiao, K. T. Ramesh, E. Ma, Scripta Mater., 50, 359 (2003) https://doi.org/10.1016/j.scriptamat.2003.10.010
  11. G. Subhash, R. J. Dowding and L. J. Kecskes, Mat. Sci. & Eng., A334, 33 (2002) https://doi.org/10.1016/S0921-5093(01)01768-3
  12. X. Gu, T. Jiao, L. J. Keckes, R. H. Woodman, C. Fan, K. T. Ramesh and T. C. Hufnagel, J. Non-cryst. solids, 317, 112 (2003) https://doi.org/10.1016/S0022-3093(02)01990-7
  13. A. Inoue, C. Fan, J. Saida and T. Zhang, Sci. & Tech. Adv. Mat. 1, 73 (2000) https://doi.org/10.1016/S1468-6996(00)00009-7