DOI QR코드

DOI QR Code

기계적 합금화 p-type FeSi2의 플라즈마 용사 성형 및 열전 특성

Thermoelectric Properties of p- type FeSi2 Processed by Mechanical Alloying and Plasma Thermal Spraying

  • 최문관 (충주대학교 신소재공학과/나노기술연구소) ;
  • 어순철 (충주대학교 신소재공학과/나노기술연구소) ;
  • 김일호 (충주대학교 신소재공학과/나노기술연구소)
  • 발행 : 2004.03.01

초록

P-type $\beta$-FeSi$_2$ with a nominal composition of $Fe_{0.92}Mn_{0.08}Si_2$ powders has been produced by mechanical alloying process. As-milled powders were spray dried and consolidated by atmospheric plasma thermal spraying as a rapid sintering process. As-milled powders were of metastable state and fully transformed to $\beta$-$FeSi_2$ phase by subsequent isothermal annealing. However, as-thermal sprayed $Fe_{0.92}Mn_{0.08}Si_2$ consisted of untransformed mixture of $\alpha$-$Fe_2Si_{5}$ and $\varepsilon$-FeSi phases. Isothermal annealing has been carried out to induce transformation to the thermoelectric semiconducting $\beta$-$FeSi_2$ phase. Isothermal annealing at $845^{\circ}C$ in vacuum gradually led to the thermoelectric semiconducting $\beta$-$FeSi_2$ phase transformation, but some residual metallic $\alpha$ and $\varepsilon$ phases were unavoidable even after prolonged annealing. Thermoelectric properties of $\beta$-$FeSi_2$ materials before and after isothermal annealing were evaluated. Seebeck coefficient increased and electric conductivity decreased with increasing annealing time due to the phase transition from metallic phases to semiconducting phases. Thermoelectric properties showed gradual increment, but overall properties appeared to be inferior to those of vacuum hot pressed specimens.

키워드

참고문헌

  1. R. M. Ware and D. J. McNeil, Proc. IEE, 111(1), 178 (1964)
  2. U. Birkholz and J. Scheim, Fiz. Stat. Sol, 27, 413 (1968) https://doi.org/10.1002/pssb.19680270141
  3. P. Y. Dusausay, J. Protas, R. Wandi and B. Roques, Acta Crystal., B27(1), 209 (1971)
  4. S. Tokita, T. Amano, M. Okabayashi and I. A. Nishida, Proc. 12th Int'l Conf. on Thermoelectrics, Nov. 9-11, Yokohama, Japan, 197 (1993)
  5. I. Isoda, Y. Shinohara, Y. Imai, J. A. Nishida and O. Ohashi, Proc. 17th Int'l Conf. on Thermoelectrics, May 24-28, Nagoya, Japan, 390 (1998)
  6. I. Yamauchi, I. Ohnaka and S. Uyema, Proc. 12th Int'l Conf. on Thermoelectrics, Nov. 9-11, Yokohama, Japan, 289 (1993)
  7. S. Shiga, K. Fujimoto and M. Umemoto, Proc. 12th Int'l Conf. on Thermoelectrics, Nov. 9-11, Yokohama, Japan, 311 (1993)
  8. I. Nishida, Phy. Rev., B7, 2710 (1971) https://doi.org/10.1103/PhysRevB.7.2710
  9. U. Birkholtz and J. Schelm, Phy. Stat. Sol., 27, 413 (1968) https://doi.org/10.1002/pssb.19680270141
  10. J. S. Benjamin, Met. Trans, 1, 1943 (1970) https://doi.org/10.1007/BF02642794
  11. D. M. Rowe and V. S. Schuka, J. Appl. Phys., 52(12), 7421 (1981) https://doi.org/10.1063/1.328733
  12. S.-C. Ur and I.-H. Kim, Materials Letters, 57(3), 543 (2002) https://doi.org/10.1016/S0167-577X(02)00826-1
  13. S. M. Meier, D. K. Gupta and K. D. Sheffler: JOM, Mar. 50 (1981)
  14. S.-Y. Hwang, B.-G. Seong and M.-C. Kim, J. of KPMI, 3(2), 79 (1996)
  15. D.-S. Seo, Monthly Ceramics, 5, 72 (1992)
  16. D.-B. Hyun, KIST Research Report, UCE1424-5888, 159 (1996)
  17. K.Ueno, S. Sodeoka, M Susuki, A. Tsutsumi, K. Karamoto, J. Sawazaki, K. Yoshida, H. Huang, K. Nagai, H. Kondo, and S. Nakahama, Proc. 17th Int'l Conf. on Thermoelectrics, May 24-28, Nagoya, Japan, 418 (1998)
  18. S.-C Ur and I.-H. Kim, J. of KMRS, 11(2), 132, (2001)
  19. S.-C. Ur, P. Nash and G. T. Higgins, Scripta Materialia 34(1), 53 (1996) https://doi.org/10.1016/1359-6462(95)00470-X
  20. M. Uemoto, Materials Transaction, JIM, 36, 373 (1995) https://doi.org/10.2320/matertrans1989.36.373
  21. Smithells Metals Reference Book, eds. by E. A. Brandes and G. B. Brook, 7th ed., ASM international, 8-55 (1997)