DOI QR코드

DOI QR Code

Growth of SiC Nanotube by SLS (Solid-Liquid-Solid) Growth Mechanism

SLS(Solid-Liquid-Solid) 성장기구에 의한 탄화규소 나노튜브의 성장

  • 노대호 (고려대학교 재료공학과) ;
  • 김재수 (한국과학기술연구원 금속공정연구센터) ;
  • 변동진 (고려대학교 재료공학과) ;
  • 양재웅 (대진대학교 신소재공학과) ;
  • 김나리 (고려대학교 재료공학과)
  • Published : 2004.02.01

Abstract

SiC nanotubes were synthesized by SLS growth mechanism using various metal catalysts. Synthesized nanotubes had mean diameters of 20~50 nm and several $\mu\textrm{m}$ length. The kind of catalysts affected microstructures of SiC nanotubes by different diffusion routes. These differences are attributed to catalysts' physical properties and relative activities to the graphite substrate. Fe acted as a good catalyst of SLS growth mechanism. But in case of Ni, SiC nanotubes grew slowly. Optical property was measured by photoluminescence measurement. Relatively broad peak was obtained and mean peak positioned at about 430 nm. This result was the same as other nanocrystalline SiC materials, but was different from the results of bulk SiC probably due to quantum confinement effect and defect in the grown SiC nanotube.

Keywords

References

  1. K. C. Kim, K. S. Nahm, Y. B. Hahn, Y. S. Lee and H. S. Byun, J. vac. Sci. Technol. A, 18(3), 891 (2000) https://doi.org/10.1116/1.582272
  2. E. Xie, Z. Zhang, Z. Ma, H. Lin and D. He, Optical Materials, 23, 157 (2003) https://doi.org/10.1016/S0925-3467(03)00078-8
  3. X, T. Zhou, H. L. Lai, H. Y. Peng, F. C. K. Au, L. S. Liao. N. Wang, I. Bello, C. S. Lee and S. T. Lee, Chem. Phys. Lett., 318(1), 58 (2000) https://doi.org/10.1016/S0009-2614(99)01398-6
  4. Z. Pan, H. L. Lai, F. C. K. Au, X. Duan, W. Zhou, W. Shi, N. wang, C. S. Lee, N. B. Wong, S. T. Lee and S. Xie, Adv. Mater., 12(16), 1186 (2000) https://doi.org/10.1002/1521-4095(200008)12:16<1186::AID-ADMA1186>3.0.CO;2-F
  5. G. W. Meng, L. D. Zhang, C. M. Mo, F. Phillipp, Y. Qin, H. J. Li, S. P. Feng and S. Y. Zhang, Mater. Res. Bull., 34(5), 783 (1999) https://doi.org/10.1016/S0025-5408(99)00073-2
  6. J. V. Milewski, F. D. Gac, J. J. Petrovic and S. R. Skaggs, J. Mater. Sci., 20, 1160 (1985) https://doi.org/10.1007/BF01026309
  7. D. H. Rho, J. S. Kim, D. J. Byun, J. W. Yang and N. R. Kim, Kor. J. Mater. Res., 13(10), 677 (2003) https://doi.org/10.3740/MRSK.2003.13.10.677
  8. Y. B. Li, S. S. Xie, X. P. Zou, D. S. Tang, Z. Q. Jiu, W. Y. Zhou and G. Wang, J. Crystal Growth, 223(2), 125 (2000) https://doi.org/10.1016/S0022-0248(01)00597-8
  9. W. Shi, Y. Zheng, H. Peng, N. Wang, C. S. Lee and S. T. Lee, J. Am. Ceram. Soc., 83(12), 3228 (2000) https://doi.org/10.1111/j.1151-2916.2000.tb01714.x
  10. C. C. Tang, S. S. Fan, H. Y. Dang, J. H. Zhao, C. Zhang, P. Li and Q. Gu, J. Crystal. Growth, 210(4), 595 (2000) https://doi.org/10.1016/S0022-0248(99)00737-X
  11. D. H. Rho, J. S. Kim. D. J. Byun, J. W. Yang and N. R. Kim, Kor. J. Mater. Res., 13(6), 404 (2003) https://doi.org/10.3740/MRSK.2003.13.6.404
  12. G. Shen, D. Chen, K. Tang, Y. Qian and S. Zhang, Chem. Phys. Lett., 375, 177 (2003) https://doi.org/10.1016/S0009-2614(03)00877-7
  13. K. M. Knowels and M. V. Ravichandran, J. Am. Ceram. Soc., 80(5), 1165 (1997) https://doi.org/10.1111/j.1151-2916.1997.tb02959.x
  14. H. J. Li, Z. J. Li, A. L. Meng, K. Z. Li, X. N. Zhang and Y. P. Xu, J. Alloys and Compounds, 352(2), 279 (2003) https://doi.org/10.1016/S0925-8388(02)01111-8
  15. D. H. Rho, J. S. Kim, D. J. Byun, J. W. Yang and N. R. Kim, J. Kor. Inst. Met. & Mater., 41(9), 600 (2003)
  16. G. W. Meng, L.D. Zhang, Y. Qin, C. M. Mo and Y. Phillipp, Nanostructures Materials, 12, 1003 (1999) https://doi.org/10.1016/S0965-9773(99)00287-1
  17. K. S. Wenger, D. Cornua, F. Chassagneuxa, G. Ferroa, T. Epicierb and P. Mielea, Solid State Comm., 124, 157 (2002) https://doi.org/10.1016/S0038-1098(02)00408-8
  18. B. C. Satishkimar, P. J.Tomas, A. Govindaraj and C. N. R. Rao, Appl. Phys. Lett., 77, 2530 (2000) https://doi.org/10.1063/1.1319185
  19. E. Munoz, A. B. Dalton, S. Collins, A. A. Zakhidov, R. H. Baughman, W. L. Zhou, J. He, C. J. O'Connor, B. Mccarthy and W. J. Blau, Chem. Phys. Lett., 359, 397 (2002) https://doi.org/10.1016/S0009-2614(02)00745-5
  20. Z. W. Pan, S. S. Xie, L. E Sun and G. Wang, Chem. Phys. Lett., 299, 97 (1999) https://doi.org/10.1016/S0009-2614(98)01240-8
  21. C. J. Lee, J. H. Park and J. Park, Chem. Phys. Lett., 326(6), 560 (2000)
  22. D. H. Rho, J. S. Kim, D. J. Byun, J. W. Yang and N. R. Kim, J. Kor. Inst. Surf. Eng., 36(3), 234 (2003)
  23. Y. Zhang, N. Wang, S. Gao, R. He, S. Miaigno, I. Zhu and X. Zhang, Chem. Mater., 14(8), 3564 (2002) https://doi.org/10.1021/cm0201697
  24. E. I. Givargizov, J. Cryst. Gr., 31, 20 (1975) https://doi.org/10.1016/0022-0248(75)90105-0
  25. Z. W. Pan, S. S. Xie, L. E Sun and G. Wang, Chem. Phys. Lett., 299, 97 (1999) https://doi.org/10.1016/S0009-2614(98)01240-8
  26. W. Han, S. Fan, Q. Li, W. Liang, B. Gu and D. Yu, Chem. Phys. Lett., 265, 374 (1997) https://doi.org/10.1016/S0009-2614(96)01441-8
  27. Y. H. Mo, M. Shajahan, K. S. Lee, K. C. Lee, K. C. Kim, O. H. Cha, E. K. Suh and K. S. Nahm, Diamond and Realted Materials, 11, 1703 (2002) https://doi.org/10.1016/S0925-9635(02)00141-3
  28. R. M. Bayazitov, I. B. Khaibullin, R. I. batalov, R. M. Nurntdinov, L. K. Antonova, V. P. Aksenov and G. N. Mikhailova, Nuclear inst. and Meth. Phys. Res. B., 206, 984 (2003) https://doi.org/10.1016/S0168-583X(03)00907-8
  29. Y. P. Guo, J. C. Zheng, A. T. S. Wee, C. H. A. Huan, K. Li, J. S. Pan, Z. C. Feng and S. J. Chua, Chem. Phys Lett., 339, 319 (2001) https://doi.org/10.1016/S0009-2614(01)00308-6
  30. C. Tan, X. L. Wu, S. S. deng, G. S. Huang, X. N. Liu and X. M. Bao, Physics Letters A, 310, 236 (2003) https://doi.org/10.1016/S0375-9601(03)00342-6
  31. M. Tiginyanu, V. V. Urasaki, V. V. Zalama, S. Langa, S. Hubbarde, D. Pavlids and H. Foll, Appl. Phys. Lett., 83(8), 1551 (2003) https://doi.org/10.1063/1.1605231
  32. H. W. Seo. S. Y. Bae, J. H. Park, H. I. Yang, K. S. Park and S. S. Kim, J. Chem. Phys., 116(21), 9492 (2002) https://doi.org/10.1063/1.1475748