DOI QR코드

DOI QR Code

Thermal Stability and Domain Structure in Spin Valve Films with IrMn Exchange Biased Layers

IrMn 교환결합층을 갖는 스핀밸브막에서의 열적안정성과 자구구조 관찰

  • Published : 2004.02.01

Abstract

We have investigated the magnetic domain structure and the thermal stability of magnetotransport properties of IrMn biased spin-valves containing Co, CoFe and NiFe. The magnetic domain structures were imaged using a magneto-optical indicator film(MOIF) technique. To investigate the thermal stability, magnetoresistance(MR) was measured at annealing temperature(TANN) and room temperature($T_{RT}$) followed by the annealing. Domain imaging reveal that the increase of annealing temperature led to changes in the exchange coupling between the two ferromagnet(FM) layers through nonmagnetic layer rather than between FM and antiferromagnet. unlike the NiFe biased IrMn spin valve with large domains, MOIF pictures of Co and CoFe biased IrMn spin valve structures show the formation of many small microdomains. The magnetic structure, as revealed by the domain images, appeared unchanged while the MR dropped dramatically. From the combined giant magnetoresistance(GMR) and MOIF results, it was apparent that the decrease of MR ratio was not related to the spin valve magnetic structure up to about $350^{\circ}C$($T_{RT}$ ).

Keywords

References

  1. Y. Irie, H. Sakakima, M. Satomi and Y. Kawawake, Jpn. J Appl. Phys., 34, 1415 (1995) https://doi.org/10.1143/JJAP.34.359
  2. J. M. Daughton, J. Magn. Magn. Mater, 192, 334 (1999) https://doi.org/10.1016/S0304-8853(98)00376-X
  3. C. G. Lee, J. G. Jung, R. D. McMichael, R. A. Fry, A. Chen, W. F. Egelhoff and V. S. Gornakov, J. Appl. Phys., 91(10), 8566 (2002) https://doi.org/10.1063/1.1455616
  4. V. S. Gornakov, V. I. Nikitenko, A. J. Shapiro, R. D. Shull, J. Samuel Jiang and S. D. Bader, J. Magn. Magn. Mater., 246, 80 (2002) https://doi.org/10.1016/S0304-8853(02)00029-X
  5. L. E. Helseth, J. Magn. Magn. Mater., 247, 230 (2002) https://doi.org/10.1016/S0304-8853(02)00189-0
  6. J. C. S. Kools, W. Kula, D. Mauri and T. Lin, J. Appl. Phys., 85(8), 4466 (1999) https://doi.org/10.1063/1.370376
  7. J. P. Nozieres, S. Jaren, Y. B. Zhang, K. Pentek, A. Zeltser, P. Wills and V. S. Speriosu, J. Appl. Phys., 87(9), 6609 (2000) https://doi.org/10.1063/1.372786
  8. E. Fulcomer and S. H. Charap, J. Appl. Phys., 43, 4190 (1972) https://doi.org/10.1063/1.1660894
  9. M. Mao, C. Cerjan, B. Law, F. Grabner and S. Vaidya, J. Appl. Phys., 87(9), 4933 (2000) https://doi.org/10.1063/1.373207
  10. J. G. Jung, C. G. Lee, B. H. Koo, G. H. Lee and Y. Hayashi, Korea Journal of Materials Reserch, 13(7), 447 (2003) https://doi.org/10.3740/MRSK.2003.13.7.447
  11. T. Nishizawa and K. Ishida, Binary Alloy Phase Diagram, 2, 1181 (1984)
  12. L. van Loyen, D. Elefant, D. Tietjen, C. M. Schneider, M. Hecker and J. Thomas, J. Appl. Phys., 87(9), 4852 (2000) https://doi.org/10.1063/1.373180