DOI QR코드

DOI QR Code

Solidification Microstructures with Carbon Contents and Solidification Rates in Modified 12Cr-lMo Steels

개량 12Cr-1Mo강에서 탄소 함량 및 응고속도에 따른 응고 조직 형성 거동

  • 엄칠룡 (창원대학교 금속재료공학과) ;
  • 이재현 (창원대학교 금속재료공학과) ;
  • 허성강 (창원대학교 금속재료공학과) ;
  • 지병하 (두산중공업(주) 생산부문 기술연구원) ;
  • 류석현 (두산중공업(주) 생산부문 기술연구원)
  • Published : 2004.02.01

Abstract

The influences of solidification rates and carbon contents on the formation of the $\delta$-ferrite were studied by directional solidification in modified 12%Cr-l %Mo steels. Directional solidification experimental results showed that solidification microstructure depended on solidification rate and carbon content and chromium equivalent. The length of the mushy zone increased and the dendrite arm spacings decreased as the solidification rate increased. The volume fraction of the 8-ferrite decreased with increasing the solidification rate and carbon content. The volume fraction of the ferrite showed much higher at low solidification rates with planar and cellular interfaces than that at high solidification rates with dendritic interface. It is expected that macro-segregation of C causes lower C content at the lower solidification fraction in the directionally solidified sample, where lower C results in higher volume fraction of the ferrite. In order to estimate solidification microstructure in modified 12Cr-l%Mo steels, various solidification conditions, such as solidification rate, cooling rate, segregation, alloy composition, should be considered.

Keywords

References

  1. J. N. Dupont, C. V. Robino and A. R. Marder, Welding Research Supplement October 417-s (1998)
  2. Masayuki Yamada, Matsuo Miyazaki, Osamu Watanabe and Mitsuo Kawai, ASTM STP903, ASTM 59 (1986)
  3. Tsukasa Azuma, Yasuhiko Tanaka, Hotohisa Yamada, Tohru Ishiguro, Yasumi Ikeda, Hajime, Yoshida, Etsuo Murai, Nobuhiko Ozaki and Toshifumi Nakajima, Japan casting & Forging Co's Technical Report, No.53, 1 (1997)
  4. S. Sawada, T. Ohashi and S. Kawaguchi, EPRI 4 (1981)
  5. Norio Morisada, Masuo Kadose, Ichiro Yoshioka and Kimihiko Akahori, 10th International Forging Conference 42.1 (1985)
  6. F. C. Hull, Weld J., 52, 104 (1973)
  7. R. C. Thomas, Weld J., 57, 81 (1978)
  8. Kimihico Akahori, United State Patent 4,404,041 Sep.13. (1983)
  9. J. M. Vitek, A. Dasgupta and S. S. David, Met. Trans. 14A, 1833 (1983)
  10. S. H. Ryu and J. Yu, Met. Trans. A, 29A, 1573 (1998) https://doi.org/10.1007/s11661-998-0080-7
  11. J. Lee, J. Verhoeven, J. Crystal Growth, 86, 193 (1994) https://doi.org/10.1016/0022-0248(94)90288-7
  12. J. Lee, J. Verhoeven, J. phase Equilibria, 15, 136 (1994) https://doi.org/10.1007/BF02646356
  13. R. Trivedi and W. Kurz, International Materials Reviews. 39, 49 (1994) https://doi.org/10.1179/imr.1994.39.2.49
  14. J. Verhoeven: Fundamentals of physical metallurgy, ch. 9, John Wiley (1980)
  15. W. Kurz and D. J. Fisher: Fundamentals of Solidification, Trans Tech Publications, 63 (1992)
  16. Korea Insititute of Machinery and Materials: Study on the ${\delta}$-ferrite Control in the 12%Cr Steel, Research Report (1998)
  17. M. A. Taha, H. Jacobi, M. Imagumbai and K. Schwerdtfeger, Met. Trans. A, 13A, 2131 (1982)
  18. M. McLean: Directionally Solidification Material for High Temperature Service, ch. 2, The Metals Society (1983)