DOI QR코드

DOI QR Code

Fabrication of Anodic Aluminum Oxide on Si and Sapphire Substrate

실리콘 및 사파이어 기판을 이용한 알루미늄의 양극산화 공정에 관한 연구

  • 김문자 (나노튜브 및 나노복합구조체 연구센터) ;
  • 이진승 (성균관대학교 진공 및 반도체기술연구소) ;
  • 유지범 (나노튜브 및 나노복합구조체 연구센터)
  • Published : 2004.02.01

Abstract

We carried out anodic aluminum oxide (AAO) on a Si and a sapphire substrate. For anodic oxidation of Al two types of specimens prepared were Al(0.5 $\mu\textrm{m}$)!Si and Al(0.5 $\mu\textrm{m}$)/Ti(0.1 $\mu\textrm{m}$)$SiO_2$(0.1 $\mu\textrm{m}$)/GaN(2 $\mu\textrm{m}$)/Sapphire. Surface morphology of Al film was analyzed depending on the deposition methods such as sputtering, thermal evaporation, and electron beam evaporation. Without conventional electron lithography, we obtained ordered nano-pattern of porous alumina by in- situ process. Electropolishing of Al layer was carried out to improve the surface morphology and evaluated. Two step anodizing was adopted for ordered regular array of AAO formation. The applied electric voltage was 40 V and oxalic acid was used as an electrolyte. The reference electrode was graphite. Through the optimization of process parameters such as electrolyte concentration, temperature, and process time, a regular array of AAO was formed on Si and sapphire substrate. In case of Si substrate the diameter of pore and distance between pores was 50 and 100 nm, respectively. In case of sapphire substrate, the diameter of pore and distance between pores was 40 and 80 nm, respectively

Keywords

References

  1. D. Peyrade, Y. Chen, A. Talneau, M. Patrini, M. Galli ,F. Marabelli, M. Agio, L.C. Andreani, E. Silberstein and P. Lalanne, Microelectronic Engineering, 61-62, 529 (2002) https://doi.org/10.1016/S0167-9317(02)00539-7
  2. M. Francois, J. Danlot, B. Grimbert, P. Mounaix, M. Muller, O. Vanbesien and D. Lippens, Microelectronic Engineering, 61-62, 537 (2002) https://doi.org/10.1016/S0167-9317(02)00526-9
  3. M. Steinhart, J. H. Wendorff, A. Greiner, et al., Science, 296, 1997 (2002) https://doi.org/10.1126/science.1071210
  4. M. J. Kim, T. Y. Lee, J. H. Choi, J. B. Park, J. S. Lee, S. K. Kim, J.-B. Yoo and C.-Y. Park, Diamond and Related Materials, 12, 870 (2003) https://doi.org/10.1016/S0925-9635(02)00364-3
  5. M. J. Kim, J. H. Choi, J. B. Park, S. K. Kim, J.-B. Yoo and C.-Y. Park, Thin Solid Films, 435, 312 (2003) https://doi.org/10.1016/S0040-6090(03)00339-0
  6. J. S. Lee, et aI., Synthetic Metals, 124, 307 (2001) https://doi.org/10.1016/S0379-6779(01)00365-4
  7. S.-H. Jeong, H.-Y. Hwang and K.-H. Lee, Appl. Phys. Lett., 78, 2052 (2001) https://doi.org/10.1063/1.1359483
  8. H. Zeng, R. Skomski, L. Menon, Y. Liu, S. Bandyopadhyay and D. J. Sellmyer, Phys. Rev. B, 65, 134426 (2002) https://doi.org/10.1103/PhysRevB.65.134426
  9. Komelius Nielsch, Frank Muller, An-Ping Li and Ulrich Gosele, Adv. Mater., 12, 582 (2000) https://doi.org/10.1002/(SICI)1521-4095(200004)12:8<582::AID-ADMA582>3.0.CO;2-3
  10. D. Crouse, Yu-Hwa Lo, A. E. Miller and M. Crouse, Appl. Phys. Lett., 76, 49 (2000) https://doi.org/10.1063/1.125652
  11. M. Sun, G. Zangari, M. Shamsuzzoha and R. M. Metzger, Appl. Phys. Lett., 78, 2964 (2001) https://doi.org/10.1063/1.1370986
  12. Z. L. Xiao, Catherine Y. Han, U. Welp, H. H. Wang, V. K. Vlasko-Vlasov, W. K. Kwok, D. J. Miller, J. M. Hiller, R. E. Cook, G. A. Willing and G. W. Crabtree, Appl. Phys. Lett., 81, 2869 (2002) https://doi.org/10.1063/1.1512993
  13. A. P. Li, F. Muller, A. Bimer, K. Nielsch and U. Gosele, J. Appl. Phys., 84, 6023 (1998) https://doi.org/10.1063/1.368911
  14. Jessensky, F. Muller and U. Gosele, Appl. Phys. Lett., 72, 1173 (1998) https://doi.org/10.1063/1.121004