DOI QR코드

DOI QR Code

Dissolution on the Surface of Bioceramics Prepared by Commercial Calcium Phosphate Powders

상용 인산칼슘계 분말로 제조된 생체세라믹스의 표면용해 특성

  • 서동석 (서울대학교 재료공학부) ;
  • 김환 (서울대학교 재료공학부) ;
  • 이종국 (조선대학교 신소재공학부)
  • Published : 2004.01.01

Abstract

In this study, dissolution characteristics of four types of commercial calcium phosphate ceramics were investigated in distilled water with respect to chemical composition and microstructure. For all samples, no significant damage was observed after 3 days of immersion. Following the 7 days of immersion, surface dissolution of the ceramics containing a crystalline phase susceptible to water such as TCP, even pure hydroxyapatite, was initiated at grain boundaries and the dissolution was extended interior to the material along the grain boundaries. In the considerably dissolved area, there was grain separation followed by the formation of 20 $\mu\textrm{m}$ of cavities. In at least one case, the residual pores on the surface appeared to initiate dissolution. In a dissolved area, a crack during the fracture propagates along the grain boundaries resulting in intergranular fracture, while transgranular fracture occurs in a dense area without significant dissolution.

Keywords

References

  1. M. Jarcho, Clin. Orthop., 157, 259 (1981)
  2. S. F. Hulbert, J. C. Bokros, L. L. Hench, J. Wilson and G. Heimke, in 'High Tech Ceramics'edited by P. Vincenzini (Elsevier, Amsterdam, 1987). pp. 189-213
  3. L. L. Hench, J. Am. Ceram. Soc., 81(7), 1705 (1998) https://doi.org/10.1111/j.1151-2916.1998.tb02540.x
  4. H. Wang, J. K. Lee, A. Moursi, D. Anderson, P. Winnard, H. Powell and J. Lannutti, J. Biomed. Mater. Res., 68A, 61 (2004) https://doi.org/10.1002/jbm.a.20056
  5. R. Z. Legeros, Clin. Mater., 14, 65 (1993) https://doi.org/10.1016/0267-6605(93)90049-D
  6. A. Royer, J. C. Viguie, M. Heughebaert and J. C. Heughbaert, J. Mat. Sci.: Mat. in Med., 4(1), 76 (1993) https://doi.org/10.1007/BF00122982
  7. G. Daculsi, R. Z. Legeros and D. Mitre, Calcif. Tissue Int., 45, 95 (1989) https://doi.org/10.1007/BF02561408
  8. S. Yamada, D. Heymann, J. M. Bouler and G. Daculsi, J. Biomed. Mater. Res., 37, 346 (1997) https://doi.org/10.1002/(SICI)1097-4636(19971205)37:3<346::AID-JBM5>3.0.CO;2-L
  9. J. Lu, M. Descamps, J. Dejou, G. Koubi, P. Hardouin, J. Lemaitre and J. P. Proust, J. Biomed. Mater. Res., 63(4), 408 (2002) https://doi.org/10.1002/jbm.10259
  10. H. Wang, J. K. Lee, A. Moursi and J. J. Lannutti, J. Biomed. Mater. Res., 67A, 599 (2003) https://doi.org/10.1002/jbm.a.10538
  11. M. A. Fanovich and J. M. Portolopez, J. Mater. Sci.: Mater. Med., 9, 53 (1998) https://doi.org/10.1023/A:1008834712212
  12. J. L. Arias, F. J. Garcia-Sanz, M. B. Mayor, S. Chiussi, J. Pou, B. Leon and M. Perez-Amor, Biomaterials, 19(10), 883 (1998) https://doi.org/10.1016/S0142-9612(97)00168-3
  13. C. V. M. Rodrigues, P. Serricella, A. B. R. Linhares, R. M. Guerdes, R. Borojevic, M. A. Rossi, M. E. L. Duarte and M. Farina, Biomaterials, 24(27), 4987 (2003) https://doi.org/10.1016/S0142-9612(03)00410-1
  14. T. Nonami and F. Wakai, J. Ceram. Soc. Jpn., 103(6), 648 (1995)
  15. S. Raynaud, E. Champion, D. Bernache-Assolant and D. Tetard, J. Mater. Sci.: Mater. Med., 9, 221 (1998) https://doi.org/10.1023/A:1008840308094

Cited by

  1. Biocompatible Hydroxyapatite Ceramics Prepared from Natural Bones and Synthetic Materials vol.22, pp.6, 2012, https://doi.org/10.3740/MRSK.2012.22.6.285