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EXTENSION OF FACTORING LIKELIHOOD APPROACH
TO NON-MONOTONE MISSING DATA'

JAE KwaNg Kim!

ABSTRACT

We address the problem of parameter estimation in multivariate distribu-
tions under ignorable non-monotone missing data. The factoring likelihood
method for monotone missing data, termed by Rubin (1974), is extended to
a more general case of non-monotone missing data. The proposed method
is algebraically equivalent to the Newton-Raphson method for the observed
likelihood, but avoids the burden of computing the first and the second par-
tial derivatives of the observed likelihood. Instead, the maximum likelihood
estimates and their information matrices for each partition of the data set
are computed separately and combined naturally using the generalized least
squares method.
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1. INTRODUCTION

Missing data is quite common in practice. Statistical analysis of data with
missing value is an important practical problem because we cannot simply ignore
the missing data. When we simply ignore the missing part of the data, the re-
sulting estimates will have nonresponse bias if the responding part of the data is
systematically different from the nonresponding part of the data. In addition to
the nonresponse bias, efficiency of the resulting estimates should be also consid-
ered because we might lose some information observed in the partially missing
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data. Groves et al. (2001) and Little and Rubin (2002) provide comprehensive
overview of the missing data problem.

To explain the basic idea of the existing methods, we use an example of
bivariate normal data. Let (Y3;,Y2;) be a vector of bivariate normal random
variable distributed as

Y ~id N [P} (oo (1.1)
Yo, H2 012 092

where 7id is the abbreviation of independently and identically distributed. Note
that the five parameters, uq, po, 011, 012, and o9, are needed to identify the
bivariate normal distribution. We assume that the observations are missing at
random (MAR) in the sense of Rubin (1976) so that the relevant likelihood is
the observed likelihood, the marginal likelihood of the observed data. Under
MAR, we can ignore the response mechanism when estimating the population
parameters.

To estimate the parameters, a direct maximum likelihood method that max-
imizes the observed likelihood can be used. To do this, we need to compute
the observed likelihood and its partial derivatives. The Newton-Raphson type
solution to the likelihood equation also requires the computation of the second-
order partial derivatives. The computation of the first and the second partial
derivatives can be cumbersome.

The factoring likelihood method, termed by Rubin (1974), avoids the burden
of computing the partial derivatives and still computes the maximum likelihood
estimate (MLE) of the observed likelihood. The factoring likelihood method com-
putes MLE’s easily, but is applicable only to the monotone missing data. For the
definition of monotone missing pattern and the non-monotone missing pattern,
see Little and Rubin (2002, Section 1.2). Under monotone missing pattern, the
observed likelihood can be factored into the marginal likelihood and the con-
ditional likelihood so that the maximum likelihood estimates can be estimated
separately at each likelihood. For example, assume that Y is fully observed with
n observations and Y5 is subject to missing with » (< n) observations. Anderson
(1957) first consider the estimation of parameters under this setup by using an
alternative representation of the bivariate normal distribution as

Yy ~iid N(ﬂl,all)a

.. 1.2
Yo | (Yii = y1s) ~ itd N(B20.1 + Bo1.1914, 022.1), (12)

where B30.1 = p2 — Par1p1, Pan = 011012 and 091 = 022 — fF 0. The
observed likelihood is then written as a product of marginal likelihood of a fully
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observed variable Y7 and the conditional likelihood of Y5 given Y;. Thus, the
parameters y; and oy for the marginal distribution of Y; can be estimated with
n observations and the other regression parameters, 2.1, f21.1, and g99.1, can
be estimated from the conditional distribution with r observations.

Note that the factoring likelihood approach consists of two steps. In the first
step, the likelihood is factored, and in the second the MLE for each likelihood
is computed separately. The advantage of the factoring likelihood method is
that the MLE’s are easily computed because the marginal and the conditional
likelihoods are of known form and thus we can directly use the known solutions
of the likelihood equations for each likelihood. For the monotone missing data,
the MLE’s for the conditional distribution are independent of the MLE’s for the
marginal distribution. This is because two sets of parameters, the parameters for
the marginal likelihood and those for the conditional likelihood, are orthogonal.
Following Cox and Reid (1987), two parameters, 6, and 62, are called orthogonal
with respect to the likelihood [(8;, 82) if E(0? logl/06,06,) = 0. Thus, because of
the orthogonality of the parameters, the MLE’s for the conditional likelihood are
not affected by the MLE’s for the marginal likelihood. Rubin (1974) recommends
the factoring likelihood approach as a general framework in the analysis of missing
data with monotone missing pattern.

Under the non-monotone missing pattern, the factoring likelihood approach
is not directly applicable because the parameters are no longer orthogonal. The
EM algorithm, proposed by Dempster et al. (1977), can be used to compute the
MLE’s under the general missing pattern, but uses an iterative procedure and
does not provide the information matrix directly.

In this paper, we consider an extension of the factoring likelihood method to
the non-monotone missing data. Note that the factoring likelihood method ease
the computation of the MLE’s but the resulting estimators are no longer inde-
pendent because of the non-orthogonality of the parameters. Thus, in addition of
the two steps in the original factoring likelihood approach, we need another step
to combine these separate MLE’s computed within each likelihood to produce
the final MLE’s. The proposed method turns out to be essentially the same as
the direct maximum likelihood method using the Newton-Raphson algorithm but
has some computational advantages. The proposed method is described under
the bivariate normal setup in Section 2. A justification of the proposed method
under a more general setup is made in Section 3. The proposed method is ap-
plied to a categorical data example in Section 4. Concluding remarks are made
in Section 5.
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2. ONE-STEP ESTIMATOR

The proposed method can be described into three steps:

Step 1. Partition the original sample into several disjoint sets according to the
missing pattern.

Step 2. Compute MLE for each identified parameter separately in each partition
of the sample.

Step 3. Combine the estimators to get a set of final estimates using a generalized
least squares (GLS) form.

In Step 1, with a non-monotone missing pattern with two variables, we have
three types of respondents that contain information about the parameters. The
first set H of units has both Y] and Y, observed, the second set K of units has
Y7 observed but Y5 missing, and the third set L of units has Y5 observed but Y3
missing. That is, we partition the sample into several disjoint sets according to
the pattern of missingness. We also define M to be the set of units that has both
Y, and Y5 missing. Let ng,ng,ny, and nps be the sample size of the set H, K, L,
and M, respectively. Note that n =ng +ng +ngp + nas.

In Step 2, we obtain the following estimators in each set: For set H, we get
the ML estimates for the five parameters in (1.2): 520.1,]1, ﬁgl.l,H, G22.1,H, fi1,H,
and 611, 5. For the set K, the ML estimates fi; xk and 611 k are obtained for u
and o1, respectively. For the set L, the ML estimates i 1 and &9 1, are obtained
for py = Bo.1 + B2r.1p1 and oe = 092.1 + B3,.1011, respectively.

In Step 3, we use the GLS method to combine the nine estimators into an
estimator for the five parameters. The nine estimates are

~ ~ !
N = (520-1,}1,521-1,H,U22-1,H,M1,H,011,H,u1,1<,U11,K,M2,L,022,L) : (2.1)
The expected values of the nine estimates are

!
n(8) = (Bz01, Pa1-1,022.1, 41, 011, 41, 011, Bo-1 + Bar1pr, 0221 + Bapqo11)  (2:2)

and the asymptotic covariance matrix is

202 on 202, o1 20% 099 202
— A 221 11 11 11 11 22 22
V= dla'g {Ebln 3 3 ) ) y ) ) (23)
ng nyg Nyg Ng Ng NI Nf
'
where 8 = (f20.1, f21.1, 0221, p11,011) and

-1 -1,2 -1 -1
Sy = Ny 022.1 (1 + o4 ul) —Np 017 022.1441
- -1 _ -1 -1 _~1 :
N 011 022111 Ny 011 0221
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Derivation for the asymptotic covariance matrix of the first five estimates in
(2.1) can be found, for example, in Subsection 7.2.2 of Little and Rubin (2002).
Independence between fi1 ¢ and 611 kx comes from the property of the normal
distribution. Observations between different sets are independent because of the
1td setup.

The GLS formulation in (2.2) and (2.3) is a nonlinear model of the five pa-
rameters. Using a Taylor expansion on the nonlinear model, a step of the Gauss-
Newton method can be formulated as

~

en = X(e — 03) +u, (24)

where e = 7 — n(8s), Os is an initial estimator of 8, n(fg) is the vector (2.2)
evaluated at 95,

1000000 1 0
0100000 H1 2ﬂ21.10'11
X=10010000 O 1 , (2.5)

00010108y, 0
0000101 0  f2,

and, approximately,
U~ (07 V) >

where V is the covariance matrix defined in (2.3). For a brief description of the
Gauss-Newton method for the estimation of nonlinear models, see Fuller (1996,
Section 5.5).

The procedure can be carried out iteratively until convergence, but we used
a single step of the procedure. For a suitable choice of the initial estimates,
the one-step estimator is a very good approximation to the maximum likelihood
estimator. The estimator is

e A 1 Xr—1 1 s -1
b =05+ (X5V5'Xs) X5Vile,, (2.6)
where X5 and Vg are evaluated from X in (2.5) and V in (2.3), respectively,

using the initial values of 8. The covariance matrix of the estimator in (2.6) can
be estimated by

. —-1
C= ( ’Svslxs) . (2.7)
The initial values for the iterative procedure are BQ(}LH, ,321.1,[{, b11.2,H,

fir = (ng + nK)_‘l (neY,H +nKTLK),
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and

G11= (g +nk—2)"" [(ng—1) sy + (ng — 1) s3],
where ¢, g and 4 g are the sample means of Y; in the sets H and K, respectively,
and s} ; and s} ;- are the sample variances of Y; in the sets H and K.

3. JUSTIFICATION

Let the score function of a likelihood be defined as

dlogl(8
S(y; 0) = —age( )

where [(8) =[], f(y:; @) is the likelihood function of parameter §. The maximum
likelihood estimator of @ can be defined as a solution to the Newton-Raphson
variant of scoring method

-1
6D = 6 + [16®)] " S(y;61), (3.1)

where 1(8) = E[—0%logl(6)/96? is the expected information matrix for 8. It
is known that if the starting value is a /n-consistent estimator of 8, then one-
step iterate ) in (3.1) is asymptotically equivalent to the maximum likelihood
estimator of 0 (e.g. Lehmann, 1983, Theorem 3.1, p. 422).

Now, under the missing data structure in Section 2, we show that the one-step
estimator in (2.6) is equivalent to the Newton-Raphson solution in (3.1). Note
that the observed log-likelihood can be written as a sum of the log-likelihood in

each set:
log(0) = logly(0) + loglk(0) + loglL(0), (3.2)

where lg = [],cp f(ys; 0) is the likelihood function defined in set H, and lx and
l;, are defined similarly. Under MAR, [ is the likelihood for the joint distribution
of Y; and Y5, i is the likelihood for the marginal distribution of Y;, and [ is
the likelihood for the marginal distribution of Y2. By (3.2), the score function for
the likelihood can be written as

S(y;0) = Su(y; 0) + Sk(y; 0) + Sc(y; 6) (3.3)
and the expected information matrix also satisfies the additive decomposition:

1(0) = 1u(6) + 1x(0) +1.(6), (3.4)
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where 15(0) = E[-3%logl(8)/96?], and Ik () and I1,(8) are defined similarly.
Let ny = ny(0) be a parametrization that Ig(ny) matrix is easy to compute.
One such parametrization is ng = (N1, My2), where ny; is the parameters for
the conditional distribution and 7, is the parameters for the marginal distri-
bution. Since the parameters for the conditional distribution are orthogonal to
those for the marginal distribution, the parametrization ng = (ny1, 752) makes
the Iy (ny) matrix block-diagonal. The parametrization for the set H need not
be the same as that for the set K nor for the set L, providing more flexibility
in choosing the parametrization. Separate orthogonal parametrization in each
set will lead to computational advantages over the direct maximum likelihood
method.
The equation in (3.4) can be written as

1) = (g%?)lﬂ(ny)(ggf)l+‘(%%?)IK("K)(2%§>,

= X'VIX, (3.5)

where X' = (9n/86,0m/06,0m,/060) and V™' = diag{Tn(ny),Ix(nx),
Ir(n;)}. Now, consider the score function in (3.3). Using the chain rule, the
score function can be written as

0 on on
5v36) = (St ) Sutvinu) + (T0¢) Styimio) + (G ) Sulyimo). (59
Let 715 be the MLE of the likelihood ly;. Taking a Taylor expansion of Sy (y;ny)
about 7 leads to
Su(y;nu) = Su(y;ou) = Zu(Au) My — w),

where Ty (ny) = —02logly(ny)/0n%. Using Su(y;fiy) = 0 and the weak con-
vergence of the observed information matrix to the expected information matrix,
we have

Su(yiny) = —Iu(hg)ng — M)
Similar results hold for the sets K and L. Thus, (3.6) becomes

S(y:0) = () T ) = ) + Gk ) Tt e = s
+ (%TIB—L) I (L)AL —n)

=XV(H-n), (3.7)
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TaBLE 3.1 2 x 2 table with supplemental margins for both variables

Set | Y7 | Yo | Count
100
50
75
75
30
60
L 1 28
2 60

H

[ R

DO ke DD DY k=

where n = (0'y, %, m%) and A = (A'y, Ak, AL)’. Therefore, inserting (3.5) and
(3.7) into (3.1), we have

N -1 ~
gle+D) — gk) 4 [x’v*x] X'Vl [f; - n(o<k>)] , (3.8)
which is equivalent to the expression in (2.6).

4. A NUMERICAL EXAMPLE

For a numerical example, we consider the data set originally presented by
Little (1982) and also discussed in Little and Rubin (2002). Table 3.1 gives the
data for a 2 x 2 table with supplemental margins for both the classifying variables.
According to Little (1982), the final probabilities of classification obtained from

EM algorithm are
711 = 0.28, @12 =0.17, @9 =0.24, 7 = 0.31, (4.1)

where 7;; = Pr(Y1 =14,Yo =j), 4,7 =1,2.
For the orthogonal parametrization, we use

!/
N = (W111, 7125 7T+1)
where

mp =Pr(Y1=1]Ys =1),
mp = Pr(Y1 =1] Y2 =2),
M4y = PI‘(YQ = 1).
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We also set & = ng. Note that the validity of the proposed method does not
depend on the choice of the parametrization. A suitable parametrization will
make the computation of the information matrix simple.

From the data in Table 3.1, the five observations for three parameters are

~

n= (ﬁ1|1,Ha7Ar1|2,Ha7AT+1,Ha7Ar1+,K,7Ar+1,L)I
_ (100 50 175 30 28
T\ 17571257 3007 90° 88

with the expectations
!
n(0) = (7T1|177T1|277T+1,7T1|17T+1 + T2 — 7T1|27r+1,7f+1)

and the variance-covariance matrix

. (U =mp) me( - ) ma (-
V:dlag{ | - v My - | ,+(nH +)’
Tl = m1g) ma(l = ma)

ng ’ ny '

The Gauss-Newton method as in (2.4) can be used to solve the nonlinear
model of three parameters, where the initial estimator of @ is 0s = (100/175,
50/125,203/388)" and the X matrix is

/

100 T41 0
X=]010 1-—m4y 0]. (4.2)
00171'1'1—-7'(1]21

The resulting one-step estimates are
711 = 0.29, 712 =0.18, g =0.23, 792 = 0.30,

which is close to the final results in (4.1) obtained from the EM algorithm.

5. CONCLUDING REMARKS

The proposed method is shown to be algebraically equivalent to the scoring
method for maximum likelihood estimation but avoids the burden of obtaining the
observed likelihood. Instead, the MLE’s separately computed from each partition
of the marginal likelihoods and the full likelihoods are combined in a natural
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way. The way we combine the information takes the form of GLS estimation
and thus can be easily implemented using the existing software. The estimated
covariance matrix is obtained automatically as a by-product of the computation.
The proposed method is not restricted to the bivariate normal distribution. It can
be applied to any parametric multivariate distribution as long as the computation
for the marginal likelihood and the full likelihood are relatively easier than that
of the observed likelihood.

The proposed method assumes ignorable response mechanism. A more real-
istic situation will be the case where the probability of Yo missing depends on
the value of Y;. In this case, the assumption of missing at random no longer
holds and we have to take the response mechanism into account. Other existing
likelihood-based methods, such as EM algorithm, cannot handle the situation,
either.
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