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Bootstrap Confidence Intervals for
the Difference of Quantiles of Right Censored Data

Jong—-Hwa Nal), Hyo-1l Park?), and Young-Mi Jang3
Abstract

In this paper, we consider the bootstrap method to the interval estimation of the
difference of quantiles of right censored data. We showed the validity of bootstrap
method and compare with others with real data example. In simulation various
resampling schemes for right censored data are also considered.
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1. Introduction

Suppose that we have two independent non-negative valued random samples X, ... » X1, and
D T with continuous distribution functions F and F, respectively. Since the right
censoring schemes are involved, we may only observe that for ;=1,2 and j=], ... %

Ty;=min(X;, Cp), 8;=KX;<Cy:
where G, ... ’Clnl and G, ... ,CZ”2 are two independent censoring random samples with arbitrary
distribution functions. In order to avoid the identifiability problem, we assume the independence
between X and C; for each jand ;.

Based on these samples, Wang and Hettmansperger (1990), Kim (1993) and Su and Wei
(1993) proposed the interval estimates of the difference between two medians. Wang and
Hettmansperger proposed a procedure by obtaining two one-sample confidence intervals and
then cooking up both intervals as one confidence interval for the difference of medians with a
certain coefficient. Also they obtained asymptotic normality for appropriately defined confidence
limits for each samples. Whereas Kim considered obtaining the interval estimation using the
bootstrap method for right censored data. However he did not provide any asymptotic result.
Su and Wel considered a procedure by defining an equation which contains the difference of

medians as a parameter. The important feature of their approach does not require the
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estimates of densities. In this paper, also we consider the interval estimate of the difference
between quantiles. For the motivation of this study, we investigate the relation of the control
percentile test statistics (Gastwirth and Wang, 1988), and the estimates of differences of
quantiles for right censored data. Then we may obtain the equivalence relation in the
following manner.

Let Fibe the Kaplan-Meier estimates for F for each ; For any p, ({ p< 1, let

00)=F; (p)=infl t:F(t)=p} and B (p)=TF 7 p)=infl :F (t)=p)
be the p-th quantiles of F and F: respectively for each ;=] 2. Using these notations, Gastwirth
and Wang (1988) proposed the contol percentile test statistics as follows:
Wom=Fo( (@) —p=FLD,0) -1
Since with probability one, ’Fz‘ I 7?\2( t)) =we see that by taking 'Fz‘l on both terms of W,,,
FEFTO) - F30 =TF(FL9,0) - F7'®
=0, —9,0.

Therefore the control percentile test statistics and the differences between two quantiles for any

given g are equivalent. This point urges us to consider the asymptotic properties for the point

estimates 8,(p) — By(p) for each given p We note that B,(p) — By(p) is the form of the
estimates of the differences of quantiles proposed by Kim (1993). In the next section, we consider

the asymptotic normality for 3,(p) — 9,(p).
2. Asymptotic Normality for 2 — 20

In order to derive the asymptotic normality for Pl(p) — az(p), we review some results for the

Bahadur type representation theorem for quantiles, which was considered by Cheng (1984) and Lo
and Singh (1985) with several assumptions for F We will follow the idea of Lo and Singh in the
following lemma. For this purpose, we introduce some notations. For each ;=1 2,
1—Hp(w) = P{T>w), Fi(w)=P{T;<u,d;=1},
KT;<t6;=1) t KT;=2wdF(u)
T.,8.,)=Q—F,(f =g - i i
E( Ui iy ) (1 z( )) 1_HF,(T1]) 0 (1 —-HFi(u))z

and finally ¢ is the upper limit of the support of Hy, in other words, §,=inf t: Hp(H=1}.

Now we state the assumptions which is needed in the following lemma:
Assumption 1. For each p and for each ;=]1,2, F; is continuous and twice differentiable at
0{p)<8;
Assumption 2. For each p and for each ;=1,2, £(6;,(p))>0 for G p)<f, where f, is the

densities for F,
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Lemma 1. For any given pand for each ;=] 2, with the assumptions 1 and 2 for F, we have that
with probability one, as y ;o0

DB — 04D = n & T8 00)

- /.
w2 faG O (een) ™,

Proof. It follows from Theorem 2 in Lo and Singh (1985).
The mean and variance for g Tj,6;, ) are as follows:

HE(T;, 05, 9]1=0
and Vil &Ty, 85, 1= (1= (D) [(1— H () dFiad.

Then the asymptotic normality for
Vil (3,(8) = B(0)— (6, (9)— 6, (1))}

with y=gy,+n, follows in the following theorem.

Theorem 1. With the assumptions 1 and 2 for F and g,/n—A,

Va (B,(0)— Do) — (6, (B) — 6, (1))
converges weakly to a normal random variable with 0 mean and variance o¢%(), where
Z(ﬁ) 1 (1 Fl(ﬁl(j)))z fﬁl(ﬁ) fﬂ?ll(u)
T FGD TH, "
1 (A—Fy(8,)° f"z(”) dF(w)
I S RO =A@
_1 -2 f"“"’ () 1 (1 —p)? f 00 dFi(w)

+

Proof. From Lemma 1, we note that with probability one,

Va{ (B (0~ 80— (6,(0)— 0,1}
=V aln 1,0 (D)= 0.(D) = ulny/n (T8 ()~ 0,(8)

, E(lei6117 1(17)) , E(Tz,,agj, 2(1)))
n, ”1 J fl(pl(p)) Ry nz 1 fz(ez(P))
+ O(n —3/4(10gn) 3/4)'

Thus the result follows from the central limit theorem with Slutsky’s theorem.
From the Theorem, we have that

Vi (9 1) =B () —(8,(D)— 0,0}/ o)

is asymptotically normally distributed with 0 mean and unit variance. Thus

(91D — B o (D)2 o)V 10
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is an asymptotic (1 — @)x100% confidence interval for §,(p)~@,(p), where z,, is a percentile
point such that @(z a/2)= 1—a/2 for the standard normal cumulative distribution @ Then we need

the consistent estimate of g2(p) for calculating the end points. However, the result may be unstable
since we have to consider estimating the densities. In order to detour this difficulty, we consider
applying the bootstrap method to obtain the confidence interval of §,(p)—@,(p) in the next section.

3. Bootstrap Interval Estimations for the Difference of Quantiles

In this section we will show the validity of bootstrap method and also introduce various

resampling schemes which are useful for censored surviving data. Let @fp), i=1,2 be the
estimators defined in the previous section and let '9;(1;) , i=1,2 be the corresponding estimators

based on bootstrap samples.

Theorem 2. Under the assumptions for F and F in Lemma 1 and ny n—As

VNI B1(8) — B3(8) — (3:(8) — Bo(9))]
converges in distribution to a normal random variable with mean 0 and variance ¢%(p), where

A= 1 =2 W dR) 1 _(1=p? (%__dFy)
ARG N Q—Hr @) 1=4 A6,0) b A—Hp @)

Proof. For detailed derivations, see Appendix in Park and Na (2000).

This means that for the approximate distribution for ’91(1))— '&Z(p), we may use the approximate
bootstrap distribution based on .(®— @ (.

Now we briefly state three types of resampling plans (Resampling I ~ II below) for censored
data which are used in Section 4. Suppose that Fand (G are the distribution functions of X and C,
respectively. Let ]—F(x) be the product-limit (or Kaplan-Meier) estimate of the failure time

survivor function and 1—G(x) be the product limit estimate of the censoring survivor function.

Resampling 1: Ordinary (or Case) Bootstrap
When the data are homogeneous sample subject to random censorship, the most direct way to

bootstrap is to set 7%= min(X*, C*), where X* and C* are independently generated from F and
G respectively. This implies that

PToa={1-C(x{1-F(x)} = [[(n+1 =),

which corresponds to the empirical distribution function (EDF) that places mass z~! on each of the
n cases (¢,8).

Resampling II: Conditional Bootstrap
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For »=],...,R,

1. Generate Xj, ..., X, independently from F

2. For j=],...,n, make simulated censoring variables by setting C}=x; if §;=0, and if §;=1],
generating C; from {T(x) —G(x)}/{1—C(x)}, which is the estimated distribution of
conditional on C DY TR then

3. Set T;=min(Xj, G}, for j=1,...,n

Resampling II: Wierd Bootstrap

When interest is focused on the survival or hazard functions, a third and quite different approach

n
uses direct simulation from the Nelson-Aalen estimate A(x) = ZS {3;/ kZIH(xj_xk)} of the

Fx<x =
cumulative hazard, where H(z) is the Heaviside function, which equals zero if <0 and equals
one otherwise. The idea is to treat the numbers of failures at each observed failure time as
independent binomial variables with denominators equal to the numbers of individuals at risk, and
means equal to the numbers that actually failed. Thus when x,{---<x,, We take the simulated

number to fail at time x;, Nj, to be binomial with denominator z— j+1 and probability of failure
d;/(n—j+1). A simulated Nelson-Aalen estimate is then

Alx) = Z”;__Jl’;___

which can be used to estimate the uncertainty of the original estimate Z(zx)

4. Comparison with Others

4.1 Other Procedures

For comparison with other procedures, we briefly describe the following two methods among
others.

(A) Wang and Hettmansperger's (WH) method
Frist of all, we obtain two univariate confidence intervals (,,0}) and (L,, ) for two medians,
g and @, with some confidence coefficients, 3, and , respectively. Then for the confidence
interval §,—@,, Wang and Hettmansperger (1990) proposed
(LI_UZ’ UI—LZ)
with some confidence coefficient y
Even though the confidence interval does not contain the unknown densities, the confidence

coefficient requires some complicated calculations and is obtainable some special cases with
relatively easy manners. For more detailed contents, see Wang and Hettmansperger (1990).

(B) Su and Wei's (SW) method
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For each ;=1,2 let S -) be the survival function for group ¢ and let Si( +) be the
corresponding Kaplan-Meier estimate. For ;=1,2, let §,=¢(p) be the pth quantile of the
distribution F; and let 9,. be a consistent estimate of ¢ which can be easily obtained by solving the
equation §,(#,)=p. Suppose that we are interested in making inferences about J=4§,—4, and
suppose that 6 can be expressed as (4, ;)

Su and Wei (1993) used a functional equation such as

_ (B(e)—1/2)* | Sy(m(d,6)—1/2)"
WA 00=""223y 7 @)

where 5%(#) is the usual Greenwood's formula for the variance of §(f) and g is a nuisance

parameter. To eliminate g, we have to minimize w(4, 6,) with respect to G- Let G(4) be the
resulting statistic. Then G(4) is asymptotically chi-square distributed with 1 degree of freedom. A
confidence interval for 4 with confidence coefficient ] —¢g can be constructed by inverting G(- ),

where {4: G(4)<x3(a)} and 2(a) is the 100xq upper percentage point of 4.

4.2 A Practical Example

In this section we show an example for illustration of our bootstrap interval estimation
procedures. We consider the data in Table 1 cited from Efron (1988). These data arose in a clinical
trial of cancer of the head and neck, comparing radiation only with radiation plus chemotherapy.
Subjects were randomly allocated to the two treatment groups. x is observed numbered number of
days following treatment before relapse. §=1 if the relapse was observed and §=( if the
experiment was terminated before the relapse was observed.

<Table 1> Head and Neck Cancer Data, Efron(1988)

Radiation Alone Radiation plus Chemotherapy
X 6 X ) X ) x 6 X 0 X )
7 1 146 1 297 1 37 1 194 1 1092 0
34 1 149 1 319 0 34 1 195 1 1245 0
42 1 154 1 405 1 92 1 209 1 1331 0
63 1 157 1 417 1 94 1 249 1 1557 1
64 1 160 1 420 1 110 1 281 1 1642 0
74 0 160 1 440 1 112 1 319 1 1771 0
83 1 165 1 523 0 119 1 339 1 1776 1
84 1 173 1 523 1 127 1 432 1 1897 0
91 1 176 1 583 1 130 1 469 1 2023 0
108 1 185 0 594 1 133 1 519 1 2146 0
112 1 218 1 1101 1 140 1 528 0 2297 0
129 1 225 1 1116 0 146 1 547 0
133 1 241 1 1146 1 155 1 613 0
133 1 248 1 1226 0 159 1 633 1
139 1 273 1 1349 0 169 0 725 1
140 1 277 1 1412 0 173 1 759 0
140 1 279 0 1417 1 179 1 817 1
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<Table 2> and <Table 3> summarize the 100(1—q)% bootstrap confidence intervals of the
difference of quantiles. For @=0.05, 0.1, we consider the quantiles for p=().5 and 0.8. All the types
of resampling schemes explained in above section are considered and all the results concerning
bootstrap confidence intervals are based on 1000 replications. The confidence intervals from both
standard and percentile bootstrap methods are given. Confidence interval based on standard
bootstrap method is obtained by using the asymptotic normality of bootstrap estimator which is
derived in Section 2, whereas the percentile method uses the percentiles of bootstrap estimates from
resampled data. For detailed explanation of the bootstrap methods refered in this paper, see Efron
and Tibshirani (1993). The results from standard bootstrap method are quite different from others
since this method does not sufficiently reflect the asymmetricity of the quantile estimators. But the
results from percentile bootstrap method are very similar to WH and SW’s. The suggested
bootstrap methods are very simple and easy to use and also does not involve any complicated
calculation. All the simulations are carried out from Splus software.

<Table 2> Bootstrap Confidence Intervals for the Difference of Quantiles( o = 0.95)

CL Method $=0.8 $=0.5
Ordinary (-52, 50) (-504, 262)
;z:s;i Conditional (~49, 47) (-558, 316)
Weird (-50, 48) (-395, 153)
Percentile Ordinary (-66, 29) (-565, 64)
Bootstrap Conditional (-66, 24) (-641, 79)
Weird (-69, 21) (-473, 53)
SW (-81, 36) (-643, 78)
Equal coefficient (=75, 28) (-565, 68)
WH Equal length (-75, 21) (-473, 68)
Equal depth (-50, 30) (-283, 121)

(SW: Su & Wei (1993), WH: Wang & Hettmansperger (1990))
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<Table 3> Bootstrap Confidence Intervals for the Difference of Quantiles( ¢ = 0.90)

ClL Method $=0.8 $=0.5
Standard Ordinary (-44, 42) (-442, 200)
Bootstrap Conditional (-41, 39) (-488, 246)

Weird (-42, 40) (-351, 109)

Percentile Ordinary (-57, 23) (-479, 39)
Bootstrap Conditional (-56, 21) (-507, 45)
Weird (-62, 19) (-415, 30)

SW ' (=70, 21) (-559, 46)
Equal coefficient (-64, 20) (-473, 64)

WH Equal length (-64, 21) (-473, 64)
Equal depth (=50, 27) (-185, 101)

(SW: Su & Wei (1993), WH: Wang & Hettmansperger (1990))
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