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Sharp Expectation Bounds on Extreme Order Statistics from
Possibly Dependent Random Variables!)

Seokhoon Yun2)

Abstract

In this paper, we derive sharp upper and lower expectation bounds on the extreme
order statistics from possibly dependent random variables whose marginal distributions
are only known. The marginal distributions of the considered random variables may
not be the same and the expectation bounds are completely determined by the
marginal distributions only.
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1. Introduction

Suppose that we are given a set of possibly dependent random variables and that only their
marginal distributions are known. Then it is generally not possible to compute the
expectations of their products or their order statistics. Knowing bounds on these expectations
therefore plays an important role in various fields of probability theory and statistics. The
Cauchy-Schwarz inequality is one example of these.

Upper bounds on the expectations of order statistics from an independent sample were dealt
with by Moriguti (1953), Hartley and David (1954), Gumbel (1954), Balakrishnan (1990) and
Huang (1998). Some of these results were extended to the case of a dependent sample by Lai
and Robbins (1978) and Arnold (1985). The most general form for expectation bounds on order
statistics from a dependent sample was given by Papadatos (2001). Assuming that

Xi,...,X, are a possibly dependent sample from a distribution function F with finite mean,
he established that E(X ,,), the expectation of the kth smallest order statistic from the

sample X,,...,X,, satisfies

ﬂfk/"F-l(u)dusE(x ys—2 (Y FVWydu E=1....n @
k 0 kn n+1__k (k—l)/n ’ 3 s ey ) .
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where F~! denotes the generalized inverse function of F and is defined by
F Y w:=inflxeR:F(x)>u}, u=(0,1).

In fact, Papadatos (2001) used the concept of maximal and minimal stability to derive
expectation bounds on order statistics from arbitrary random variables. Let X,,...,X, be
arbitrary, possibly dependent, random variables with possibly different marginal distributions.
We say that X,,...,X, are maximally (or minimally) stable of order ; for some
j=1,...,n if the distribution of max{X,,...,X,} (or min{X,,...,X,}) is the same for
all 1<k <{:-<k;<n. In particular, Papadatos (2001) showed that if X,,..., X, are maximally
(or minimally) stable of order j for some j=1,...,#n and EX]|<{o for all i=1,...,n,
then

EX, )= folFf,)l(u) du (or E(X )< fol er@) a’u), (1.2)

where F(j and Gy; denote the generalized inverse functions of F; and G, respectively,
which are defined by
F(0)=P{X,<x,...,X;<x}, xR,
Gpm=1-PXpDx,...,X>x}, x€R.

To compute the expectation bounds in (1.2), one has to know the explicit forms of the
dependent functions F(; and G, which are in fact the distribution functions of
max {X,,...,X;} and min{X,,..., X}, respectively. For a larger j, one may easily expect
that the bounds in (1.2) become sharper, since more information about the dependent structure

of the random variables is then utilized. Note that for j= #, the inequalities in (1.2) should be
replaced by equalities, i.e.

1 1
BX,.)= [ Fiydu, BEX,.)= [ G} du,

since F'(,, and G, are actually the distribution functions of X ,, and X ., respectively.
In this paper, we deal with arbitrary, possibly dependent, random variables X,,...,X,

with possibly different marginal distributions. Unlike the results in (1.2), we here assume that
the dependent structure of the random variables is totally unknown. Without using any
information about the dependent structure, we derive sharp upper and lower expectation

bounds on their extreme order statistics X ,., and X ,., based on their marginal distributions

only. When the marginal distributions are all equal, our bounds coincide with the bounds in
(1.1). The result, for instance, might answer whether it is possible to construct a random

vector (X;,...,X,) with given marginal distributions such that the expectation of their

maximum X ,., or minimum X ., coincides with a specified value.
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2. Main Results

We begin with the case of two possibly dependent random variables X, and X, with
possibly different marginal distributions. By x,Vx, and x,/\x, we denote max{x,,x,} and

min{x,, x5}, respectively.

Theorem 2.1. Let X, and X, be two possibly dependent random variables with possibly
different distribution functions F; and F,, respectively. Assume that F|X |{c and
E\X,|<. Then, we have

() E(FTHO)VF; (D) <E(X\VX)<E(F{ (U)VF; '(1- ), @D
(i) E(FT ONAF;{(1— D) <E(XAX)<E(FT (UAF; (D)), (2.2)

where U is a uniform(0,1) random variable.

Proof. (i) From the Bonferroni inequality, we have
(Fi(0)+ Fy(x) —DVO<G(x): = P{IXVX,<x}<F(x) ANFy(x), x=R. (2.3)
Let G, be the distribution function of the random variable F; (1) F3(1— U). Then
Gy(x)=PIFI (OVF;'(1- V) <x} = P(F{ () <x, F7 (1= U) <x)
=P{USF\(x),1- U<F;(x) }=(F, () + F,(x)-1DV0, x€R.
Substituting Gy(x) for the lower bound of G(x) in (2.3) and taking generalized inverses
there, we thus have
FTi w)VF; (W <G Y w=<G; (w), u=(0,1).
Thus,
E(FT(UOVF; () <E(G™H(U)<E(Gy (D),
which completes the proof of (2.1) since E(G U))=E(X,VX,) and E(G; ()=
E(F{ (O)VF;\(1- ).
(ii) It is easy to show that
Fi(x) VFy(x) <H(x): = PIXONX,<x}<(F () + Fy ()AL, xeR. (2.4)
Let H, be the distribution function of the random variable Fj () AF;}(1— U). Then
Hy(x)=PFT {OAF; ' Q- D) <x}=PF{ (D) <x or F;(1—U)<x}
= P{F{ () <x} + P{F; '(1— U)<x}— P{F{ M) <x,F; '1—- V) <x}
=F(0)+F(x)—(F,(x)+ Fy () = DVO0=(F, () + F; (W)N]l, x€R.
Substituting Hy(x) for the upper bound of H(x) in (24) and taking generalized inverses
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there, we thus have
Hy ' (@) <H Y2) <FT Y @) AF3 (), u=(0,1).
Thus,
E(Hy (U) <E(H {) <E(F{ (U)AF; (),
which completes the proof of (2.2) since E(H (U)=E(X;AX,) and E(H,X))=
E(FT{ONF7Y(1-D)). O

The bounds in Theorem 2.1 are sharp in the sense that for instance, the upper and lower
bounds in (2.1) are attainable when X;=F7 1), X,=F;1-0) and X,=F7}D),

X,=F; (U, respectively. If F;=F,, then the bounds in Theorem 2.1 coincide with the
bounds in (1.1) with #=2 and F=F,=F,.

Corollary 2.1. For any two events A and B, we have
(i) P(A)VP(B)<SP(AUB)<(P(A)+ P(B)A], (2.5)
(ii)) (P(A)+ P(B)—1)VO<P(ANB)<P(A)/\P(B). (26)

Proof. Let U be a uniform(0,1) random variable and write p= P(A°) and g¢g= P(B°). Let
I, denote the indicator function of the set A.
(i) Since P(AUB) = E(I,VVIg), we have from (2.1)
P(AUB) < E(I, y,(D)VI, (1= ) =EI, ,(D)VI - (D)
=14+(1—-p—/N0=(P(A)+ P(B)A1

and

P(AUB)2E(I, ,(D)VI, n(D)=1—p\g= P(A)\/P(B)
which completes the proof of (2.5).
(ii) Since P(ANB) = E(14/\Ig), we have from (2.2)

PANB)Y<E(1 (5, y(D) N (4, y(D)) = EXI (50 (D)) =1— NV g= P(A)\P(B)

and
P(AﬂB) = E(I(ﬂ, 1)( U)/\I(q’ 1)(1 - (])) = E(I(p’ 1)( U)/\I(o, 1 —q)( U))
=(1—¢— V0= (P(A)+ P(B)—1)\V0,
which completes the proof of (2.6). O

We briefly introduce two examples.

Example 2.1. Let X, and X, be two possibly dependent uniform(0,1) random variables. Let
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F be the common distribution function of X; and X, Then F~Y(U)=U, where U~
uniform(0,1), so that

E(F-{OVF Y ()=E)=1/2,
E(F Y (OVFIQ-0)=EUvV(1—-U)=3/4,
E(F"YOAFY(U)=1/2,

E(F Y O)AF Y 1-)=1/4.
Thus, by Theorem 2.1, we have

12<E(X\VX,)<3/4, 1/A<E(X\N\X,)<1/2.
In particular, if X, and X, are independent, one can easily find that E(X;VX,)=2/3 and

Example 2.2. Let X,;~uniform(0,1) and X,~exponential(1) be possibly dependent. Let F;
and F, be the distribution functions of X; and X,, respectively. Then F]NU)=U and
F; ()=~ log(1— U), where U~ uniform(0,1). Using the program of Mathematica, we get
E(FT(U)VF; (U)=E(UV(— log(1— ) =1,
E(FT () VF; '(1— U)=E(UV (- log)) = 1.22797,
E(FT (O AF; (1)=0.5,
E(FT{ONF;{1— U))=0.272031.
Thus, by Theorem 2.1, we have
1<E(X\VX,)=<1.22797, 0.272031<E(X;A\X;)<0.5.
In particular, if X, and X, are independent, one can easily find that E(X,VX,)=3/2—e !

=1.13212 and E(X;AX,) = e~ '=0.367879.

The result of Theorem 2.1 can be extended to the general case of # (#=3) possibly
dependent random variables with possibly different marginal distributions if the marginal

distributions are all continuous. By V7.,x; and A}_,x; we denote max{x,,...,x,} and

min{x,, ..., x,}, respectively.

Theorem 2.2. Let X,,...,X, (n=3) be possibly dependent random variables with possibly
different distribution functions F,,...,F,, respectively. Assume that EX]<o for all
i=1,...,n If F\,...,F, are continuous, then we have

(i) ENI_ FTY ) <EN?_ | X)<EN?_,Y), Q.7
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(ii) BN\’ Z)<EN"_ X)<ENL F7 (), (2.8)
where U is a uniform(0,1) random variable, and {Y,,...,Y,} and {Z,,...,Z,} are defined
recursively by

Y, =F{'U), Mi=Y,, G=F,

YV,=F;' A= G (My_ ), M,=V*%_\Y; G, distribution function of M, k=2,...,n
and

zZ,=F{U), N\=2,, H=F,,

Z,=F;'01—H,_(N,_\), N,=NA\%.,Z;, H,distribution function of N, k=2,...,n.

Proof. (i) Due to the Fréchet bounds, we have

( =f\F,.(x) —n+DVO<G(x): = PIV™ X, <x}< AT F{x), x=R. 2.9)
By induction, we will show that for k=1,...,#,
k
Gu(x)=( ;Fi(x) —k+1)V0, x€R. (2.10)

Clearly, (2.10) holds for %~=1. Suppose (2.10) holds for k=j={1,...,z—1}. Then
Gip(0)=P{M,;, \<x}=PM;<x,Y;, <x}
= P(M;<x,F;(1— G;(M;))<x}
= P{G; (D) <x, F;;L,(1~ G, (G 1)) <x}
=P{U<G/(x),1-U<F; (%)}
= (G, +Fyy @—DVO= (R F®-)V0, z=R,
since G,(G;'(U))=U from the continuity of G; This implies that (2.10) also holds for
k=j+1. Thus (2.10) holds for k=1, ..., % Substituting G,(x) for the lower bound of
G(x) in (29) and taking generalized inverses there, we have
VI Fi w <G W w<G,(w), u=(0,1).
Thus,
E(NVI_ FTH D) <E(GHU)<E(G, (DY),
which completes the proof of (2.7) since E(G_I(U))=E(V?=1Xi) and E(G; ¥ U))=E(M,,)
=E\Vi.,Y).
(i) We start with an obvious relation

Vie 1 F{x)<H(x): = P{/\LIX,-Sx}S(Zn;F,-(x))/\l, xR, (2.11)

By induction, we will show that for £=1,...,n,
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k
Hy(x)=( ;Fi(x)) Al, x€R. (2.12)
Clearly, (2.12) holds for £=1. Suppose (2.12) holds for k=j={1,...,7n—1}. Then
H; ()= P{N;;,<x}=P{N<x or Z;,<x}
= P{N<x}+P{Z;, ,<x}— P{N=<x,Z;, <x}
= Hj(x)+Fj+1 (x)_(Hj(x)+Fj+] (x)— 1)VO0

— (B, )+ Fjuy DAL= (L FDAL 2=R,
since
P{N<x,Z; . 1<x}= P(N<x,F;},(1— H;(N;))<x}
= P(H; (D) <x, F;.L(1- H;(H; 1(D) <x)
=P{U<H{(x),1-U<F;;(x)}
=(H;(x)+ F;1; ()—1)V0
from the continuity of H, This implies that (2.12) also holds for %2=j+1. Thus (2.12) holds
for k=1, ...,n Substituting H,(x) for the upper bound of H(x) in (2.11) and taking

generalized inverses there, we have
H W) <H (W) <AN_,F; Y w, u=(0,1).
Thus,
EH(U)<EH ') <EN F7HOY,
which completes the proof of (2.8) since E(H Y(U))=E(A?.; X, and E(H, U))= E(N,)
= E(N\}_,Z). O

The bounds in Theorem 2.2 are sharp. For instance, the upper and lower bounds in (2.7)
are attainable when X;=Y, i=1,...,n and X,=F;YU), i=1,...,n respectively.
Notice that for each i=1,...,n, Y; and Z; have the same distribution function F; If

F,=--=F, then the bounds in Theorem 2.2 coincide with the bounds in (1.1) as seen in

the next corollary.

Corollary 2.2. Let X,,...,X, (n=3) be a possibly dependent sample from a distribution

function F with finite mean. If F is continuous, then we have
i 1
(i) fo F Y dus BV X )<n f( F~Y(u) du, (2.13)

n—1)/n

Un 1
(ii) n fo FY(w) du< B(AI_, X )< fo F~N(w) du (2.14)
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Proof. Let U be a uniform(0,1) random variable.
(i) Since G,(x)=(nF(x)—n+1)V0, xR (see (2.10)), we have

G, w=F Y((ut+n—1/n), u=(0,1).
From (2.7), we thus have
E(F Y U)<ENVi X)<E(NVi., Y)=EG, ()= EF ' ((U+n—1)/n),

which completes the proof of (2.13).

(i) Since H,(x)=(nF(x))Al, xR (see (2.12)), we have H,(w)=F Yu/n), u=(0,1).
~ From (2.8), we thus have

E(F N U)=E(N}- X )=E(N\]-,Z) = E(H,"(U))= E(F~{(U/n)),

which completes the proof of (2.14). O

We end this section with one more example.

Example 2.3. A random variable is said to have a BurrlV(a,7) distribution for some a>0
and >0 if its distribution function is given by F(x) =[(a/x—1Y*+1177, 0<{x<a. Let
X, ~uniform(0,1), X,~BurrlV(1,2) and Xj3/2~uniform(0,1) be possibly dependent. Then the

distribution functions of X;, X, and X; are respectively F,(x)=x and F,(x)=x% for
x€[0,1] and Fy(x)=x/2, 0<x<2, and so Fi w)=u, F; w)=Vu and Fj'(w)=2u
for u=(0,1). Thus,

Ve if 0<u<l/4,

3 — 1 _
ViaFi (”)“[2u- if 1/4<u<1,
and AY FrWw=u, 0<u<l. Also,

G = (5 F@-pVo= {732 =2 it (734 VAD/=x<1,

3
and Hg(x)=(;F,-(x))/\l=x2+3x/2, 0<x<1/2, so that

G () = {( 3+VAL+16w)/4 if 0<u<1/2,
3 if 1/2<uc1,

and H7'(w)=(—3+V9+16u)/4, 0<u<{l. An easy computation yields that
E(V3 F7 () =49/48 = 1.02083,
E(G7 X U))=(379—41V 41)/96 =1.21325,
E(NL FT(UN=0.5,
E(H; (1)) =13/48 =0.270833,



Sharp Expectation Bounds on Extreme Order Statistics 463

where U~ uniform(0,1). Thus, by Theorem 2.2, we have

1.02083<E(\V3_,X,)<1.21325, 0.270833<E(A3.,X)=<0.5.
3. Conclusion

In this paper, we considered possibly dependent random variables X,,...,X, with possibly

different distribution functions F,,...,F,, respectively, and derived upper and lower

expectation bounds on the extreme order statistics Vi-;X; and A7.;X; based only on
F,,...,F, The expectation bounds are sharp in the sense that they are attainable. Our

formulas for the expectation bounds are particularly helpful to notice when they are attainable

and how the corresponding dependent structures of Xj,...,X, are composed of. We did not

cover the expectation bound on an arbitrary order statistic from Xj,...,X,, which is left as

a further research topic.
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