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Dynamic Residual Plots
for Linear Combinations of Explanatory Variablesl)

Han Son Seo2)
Abstract

This article concerns dynamic graphical methods for visualizing a curvature in
regression problem in which some predictors enter nonlinearly. A sequence of
augmented partial residual plot or partial residual plot updated by the change of linear
combination of two predictors are constructed. Examples demonstrate that the
suggested methods can be used to reduce the dimension of explanatory variables as
well as to capture a curvature.

Keywords ° Augmented partial residual plots, CERES plots, Dimension reduction,
Dynamic graphics, Partial residual plots, SIR.
1. Introduction

We assume that the regression function is characterized by the model
Y=XB+A2)+¢ (1.1

where B is an unknown px1 vector, X is a known zxp matrix, standing for the value of »
explanatory variables, Z is an explanatory variable, & is independent of X and Z, and f
is unknown function. Many methods have been suggested to provide a visualization of the

function f. Partial residual plot is the plot of e+ @Z versus Z where ® and e are the

least squares estimator and the ordinary least squares residual respectively from linear
regression model

Y=Xpo+ ¢Z+ ¢ (1.2)

where p is an unknown px]1 vector and ¢ is a scalar.
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Partial residual plot was proposed by Larsen and McLeary(1972) and discussed by many
authors (Atkinson, 1985 ; Fox, 1991 ; Cook, 1993). Augmented partial residual plot was

suggested by Mallows(1986). To improve the ability to reveal a curve f in the model (1.1),
augmented partial residual plot uses alternative model replacing (1.2) by

Y=Xo+ ¢, Z+ ¢, 2%+ e. (1.3)

Augmented partial residual plot is a plot of e+ ES\IZ + 7]5\222 versus Z. Adding a
quadratic term may provide a better estimate of f than that of partial residual plot if AZ)
is approximated better by ¢,Z+ ¢222 than by ¢Z. Since augmented partial residual plot
does not require the linearity assumption on FE(X|Z) it can depict f better than a partial

residual plot regardless of the form of f.

Cook(1993) designed CERES plot, an abbreviated acronym for “Combining Conditional
Expectations and RESiduals”. CERES plot based on the fact that conditional expectations

E(X | Z)is the key to enhance the usefulness of the partial residual plot and augmented

partial residual plot. CERES plot is constructed as €+ E(X| Z)b versus Z; ,i=1,",n.
The regression function for CERES plot is

Y=Xa+E(X | 2)b+e. (1.4)

E(X|Z) can be estimated parametrically or nonparametrically and coefficients are

estimated by minimizing a convex objective function : (g, d) = arg min L,(a,b)
n

where L,(a,b)= —’1; ZlL(yi—xla—E(Xl Z)b), (y;,x,) is the  th value of data and
&=

L is a convex objective function. If E(X| Z) is linear in Z CERES plots are partial
residual plots and if E(X| Z) is quadratic in Z then CERES plots are same as
augmented partial residual plots. Though CERES plot is more general its efficiency
heavily depends on the accuracy of estimator of E(X | Z) (Seo, 1999).

AMONE 1is an iterative numerical method based on the backfitting algorithm (Breiman
and Friedman, 1985). It generalizes the model (1.1) to the additive model,

Y=C+ ﬁél f(X,)+ e where X, is the i th explanatory variable. Using a nonparametric

smoothing method such as loess or smoothing splines of the function f's, the plot of
A x,)+e versus x,is designated as AMONE for ;.
Johnson and McCulloch(1987) and Cook (1996) compared partial residual plot with an added
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variable plot which uses the residuals from the regression of y on the other predictors,
graphed against the residuals from the regression of Z on the other predictors. They also
suggested another plot based on locally linear approximation method for visualizing f. Berk
and Booth (1995) compared performance of these plots and gave an empirical result that the
AMONE based on smoocthing just one predictor and CERES plot seem equally good.

This article propose to apply augmented partial residual plot to a sequence of linear
combinations of two variables. It can give information on the transformation of the variables
for the linearity of regression function, which is hard to obtain by considering just one
variable only. It also can be used to provide information about dimension reduction. Section 2
defines two different types of dynamic plots for visualizing the curvature, animated by linear
combinations of two variables. Examples of dynamic augmented partial residual plot are given
to demonstrate that they can be used to reduce the dimension of explanatory variables as well
as to capture a curvature. Section 3 has concluding remarks.

2. Dynamic added variable plot of linearly combined variables

The applicability of the graphical methods mentioned in the section 1 is extended by
introducing a linear combination of two variables to the model. Consider two different cases
represented by the following models :

Y= Xa+ f(Zg) (2.1)
and
Y=Xa+f0(W)+ 7ZG+€ (2.2)

where Z,= cos0Z,+ sinfZ,, W is an explanatory variable and f, is a function of W
with Z, as one of explanatory variables.

When a true model is (2.1) rotation technique of 3D plot can be used to find a function

f and an appropriate linear combination of Z; and Z,. Rotating 3D plot about vertical axis
by the angle of @ changes the horizontal axis and the vertical axis in the computer
screen which represent Z, and }‘(ZB) respectively. The shape of f can be clearly
captured by exploring }‘(ZB) updated by the change of 4. Rotating 3D plot is equivalent
to animating 2D plot of A Z,) versus Z, changed as @ varies. Dynamic two dimensional

partial residual plot or augmented partial residual plot is easily constructed by letting
Z=cos 0Z,+ sinZ, in (1.2) and (1.3) respectively.
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Model (2.2) reflects the effect of a linear combination of Z;, and Z, on f«(W. The
image of f,(W can also be obtained by searching a sequence of plots of f,(W versus
W. Dynamic plot for model (2.2) can be used to reduce the dimension of explanatory

variables. Assume that Y and X are independent given 77X as denoted by

YIIX|9TX (or equivalently, YII X | Py ,X) (2.3)

where 7 is a fixed p by ¢, (g < p) matrix , S(z) is a subspace spanned by column

of 7 and Py, is orthogonal projection operator onto S(7). S(7) is called a dimension
reduction subspace for the regression of Y on X. Expression (2.3) implies that the p

predictors of X can be replaced by the smaller number of ¢ predictor vectors 77X and
thus reduction in dimension of the predictors can be achieved. Cook (1998b) defined the
central subspace, meaning the smallest dimension reduction as the interaction of all
dimension reduction subspaces. The dimension of the central space is called structural
dimension. If f,(W is linear in (2.2) the dimension of explanatory variables is reduced to
one. If not, the dimension of explanatory variables is two under the model of (2.2).
There are many approaches to pursuit lower dimensional exblanatory variable space in
the regression. SIR (Sliced Inverse Regression, Li, 1991), SAVE (Sliced Average Variance
Estimate, Cook & Weisberg, 1991) and PHd (Principal Hessian Directions, Li, 1992: Cook,
1998a) are generally recommended methods. In the following example we use SIR(Sliced
Inverse Regression) to compare with dynamic augmented partial residual plot from a
dimension reduction standpoint, Li(1991) proposed an algorithm for SIR predictors and
asymptotic test statistics for structural dimension. The rationale for estimating central

space by SIR is based on the fact that S[Var[E(z|ly]]l= S[E(zly)] and

S[E(Zy)]1C S[z] , where z= Var(x) 12(x— E(x)).
Computer programs for examples were carried out by using Xlisp-stat (Tierney, 1990)
under the environment of statistical package ARC (Cook and Weisberg, 1999).

Example I: (Under model (2.1))

Data of 50 observations are artificially created. Explanatory variables x, z;, 2z, are
generated from three independent standard normal random distributions. Response variable y
is defined by the model y=2+2x+(zl+322)2+0.5N, where N is a standard normal

variable. Figure 1 shows a sequence of dynamic augmented partial residual plot for several

different linear combinations of z; and z,. The equation at the top of each plot represents

the linear combination of z; and 2z, corresponding to the plot. Around 0.31z;+ 0.95z,
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augmented partial residual plot shows the most clear trend. It implies that /0.31z,+0.95z,)

is a quadratic function.
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Figure 1. Dynamic augmented partial residual plot for example 1.

Example 22 (Under model (2.1))

For the second example of dynamic augmented partial residual plot under (2.1), 50

observations were generated to the model y=2+2x+ 32;—4z2,+0.5N, where N, x, z,
are independent standard normal random variables, and 2z, is generated from
z,=V 22 +22,;+3. Under this construction of variables AZ,) could be linear or nonlinar
depending on the linear combination of Z; and Z,. From the first frame in figure 2 we
see that when only z; is involved in the regression f(z;) is estimated as a quadratic
function and that —0.59z,+0.81z, is an appropriate linear combination to make fz,)

linear.
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Figure 2. Dynamic augmented partial residual plot for example 2.

Example 3 : (Under model (2.2))

To illustrate dynamic augmented partial residual plot under (2.2) mussels data (Camden,
1989) is used. A sample of 201 horse mussels was collected at 5 sites in the
Marlborough Sounds at the Northeast of New Zealand's South Island. The response
variable is the edible portion of the mussel M. There are 4 explanatory variables, shells
width W, shell height H, shell length L and shell mass S. Since we want to compare the
results of dynamic augmented residual plot and those of SIR, all variables are
transformed by log function to comply with the linearity condition which is required for
using SIR method. We set the model as

log[M]= alog[ W]+ A log[H]) + blog[L]+ clog[S]+ .

SIR analysis may be sensitive to the number of slices used. Tablel and Table 2
summarize SIR analysis with number of slices = 4 and 5 respectively. Both suggest 1D
structural dimension. The first SIR predictors for each case are

0.20log[W] —0.63log[L]+0.641og[S]1+0.4010og[H]

and

0.271og[ WM —0.621log[L]1+0.6910og[S]1+0.251og [H].
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Table 1. Results of SIR analysis : number of slices =4.

(a) Test of dimension (b) The first SIR Linear combination
Number of Test Predictors Raw Std.
Components  Statistic df p-value log[W] 0.203 0.104
i 70.806 12 0.000 loglL] -0.630 -0.240
2 8.2651 6 0.219 log[S] 0.638 0.955
3 0.90652 2 0.636 log[H] 0.393 0.137

Table 2. Results of SIR analysis : number of slices =b.
(a) Test of dimension {b) The first SIR Linear combination
Number of Test Predictors Raw  Std.
Components  Statistic df  p-value log[W] 0.273 0.130
1 80.564 16 0.000 tog[L] -0.620 -0.219
2 10.572 9 0.306 loglS] 0.693 0.964
3 3.1538 4 0.532 log[H] 0.246 0.080

Figure 3 (a) is a plot of log[M] versus the first SIR predictors with 5 slices. It suggests
that the regression function of log[M] on the first SIR predictors is linear. From the

dynamic augmented partial residual plot in figure 3(b), we know that the best view of
Flog[H]) is obtained when —(0.71log[{L]+0.71log[S] is included in the model and

then Hlog[H]) is linear. So dynamic augmented partial residual plot also implies that
the structural dimension is one and the structure of regression function is linear.
Furthermore, coefficients of log[L] and log[S] have almost same ratios of —1. Both the
results from SIR analysis and dynamic augmented partial residual plot detect case 7 and
47 as outliers to the model fit. Without case 7, 47 results are almost same for both
methods.
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Figure 3. SIR plot and Augmented partial residual plot for example 3.

3. Remarks

The suggested methods are designed to be used to find an appropriate linear combination of
explanatory variables, which makes a transformation possible in the regression model. They
seem well suited for studying a possible transformation but may suggest several different
transformations when explanatory variables are not independent. From figure 2 we may infer

that —0.95z,+0.312z, is a linear combination to make Az,) quadratic. But

—0.592,+0.81z, is more meaningful because its function is linear and allows a
low-dimensional view of the data and may lead to an initial parametric model. The suggested
methods also can be used supplementally to solve the problem of dimension reduction of
explanatory variables, for example, when SIR is sensitive to the number of slices.

In the examples only dynamic augmented partial residual plots are shown. CERES plots also
can be animated similarly. But CERES plots are disadvantageous to be animated because they

require accuracy of £(X ] Z) in each flame of dynamic plots.
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