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Nonparametric Procedure for Identifying
the Minimum Effective Dose with Ordinal Response Data

Jongsook Kang! and Dongjae Kim?2)

ABSTRACT

The primary interest of drug development studies is identifying the lowest dose
level producing a desirable effect over that of the zero—dose control, which is referred
as the minimum effective dose (MED). In this paper, we suggest a nonparametric
procedure for identifying the MED with binary or ordered categorical response data.
Proposed test and Williams’ test are compared by Monte Carlo simulation study and
discussed.
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1. Introduction

In exploration of dose-response relationships, focus of toxicological and drug development
studies is different. While the main interest of toxicological studies is the safety of the toxin
under consideration, the primary concern of drug development studies is identifying the lowest
dose level producing a desirable effect over that of the zero-dose control, which is commonly
referred as the minimum effective dose (MED : Ruberg, 1989). Test procedures for identifying
the MED have been proposed by several authors for continuous response variables. For
instance, Williams (1971, 1972) designed a test procedure for comparing dose treatments with
a zero—dose control concerning a normally distributed response. The test procedure uses a
statistic based on isotonic regression estimates of the sample means for a monotonic
dose-response relationship. Shirley (1977) suggested a nonparametric version of Williams’ test.
Moreover, Williams (1986) proposed a more powerful test by reranking the observations at
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each stage of Shirley’s test procedure.

However, it is observed frequently response variables are measured with a set of binary or
ordered categories, that is, ordinal responses. When responses are binary, Williams (1988)
considered the elementary statistical problem of testing for differences between a set of
probabilities. For i=10,1,---,k, let ¥, be independently distributed random variables, each

with a binomial distribution B(n,,f;), where 0, is the probability of success in the ith
treatment. Williams (1988) compared k+ 1 dose groups by testing H : 6, =6, ==06,
versus H, : 0y < 6, =---=< 0, ( with at least one strict inequality ).

In addition to binary responses, we consider a case that response variables are measured
with a set of ordered categories and we propose a nonparametric testing procedure for
identifying the MED with binary or categorical responses.

In Section 2, we propose how to construct a test for ordinal responses. In Section 3, we
present the Monte Carlo study results to compare the proposed test with Williams’ test for
binary responses. We also examine the simulation results when responses are ordered
categorical. The final section contains some conclusion and remark.

2. The proposed test

Chen (1999) proposed a test procedure for identifying the MED with continuous response.
The test is used the Mann-Whitney statistic and the step-down closed testing scheme
suggested by Tamhane et al. (1996). Appling this test we propose a nonparametric procedure
for identifying the MED with ordinal responses.

Let k denote the number of treatments with the exception of a control, and let ¢ denote the
number of categories of the response variable, which is denoted by Y. Let z; (i =0,1,---, k,

j=1,2,---,¢) denote the number of individuals in the ith treatment group whose response

c

falls in the jth category. Let ™% = Z‘f Zij denote the number of subjects in that group, and
F=

i
N, = /Z; n 1=1,2,---,k. We treat the counts in separate rows as independent multinomial

samples (when c¢=2, binomial samples). We arrange the k treatment groups from the lowest to

the highest dose group, and the response categories from the least favourable to the most
favourable. Note that a test for binary responses can be viewed as a special case of the ¢ is

2. Therefore this test can be used when responses are involved in a set of binary or ordered

categories. Let Y, denote a response at dose ¢ with F;j= P (Yz = j) and independent

multinomial variables from the probability mass function defined by P; through P, with
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[+
D1 P5=1 (i=0,1,..,35=1,2,..,c). The hypothesis for identifying the MED is as
P

follows
H: Fyy=Fy== F,

H;,l :FOj = Flj == ‘Fi—1j> ‘F’iji fO'T' all J

We consider using the Mann-Whitney statistic incorporated into the step~down closed
testing scheme to estimate the MED. This statistic can be applied to situations in which no
numerical responses are observed but the subjects are divided into ordered categories, and it
is observed how many subjects in the treatment and control groups fall into each of theses
categories. The two-sample statistic comparing the 7th dose group with the combined groups
of all lower dose levels is

1 1 1
1, =, (jsil) + 2 (59 + 5’3&) +oot a5y s+t 53@)

+oot 3 (sy+sp oot ‘%—Sm);

i—1

where 1= 1127"';k ) J= 17"'76 v Sy = ly‘b i . And then, let

polmow@l
(T
n, N;_ (t3—t.)
N,_ N_ (N +1 -1y T
e ()= 2, iy~ Balie) MU B s,

is the size of tied group j. Under the null hypothesis Tf 5 Tg PREEN T: are asymptotically
independent and identically distributed standard normal by the results in Terpstra (1952) and
the projection theorem (Randles and Wolfe, 1979).
We describe Chen’s test procedure applying step—-down closed testing scheme proposed by
Tamhane et al. (1996) as follows : Let ki =k and find (). T4 is the maximum of
1
Tf, T{,---, .T;: Let a(kl)‘:l—(l-a)k‘ and z(a) is the upper ath percentile of the

1

standard normal distribution. Define d(k;) to be the antirank of T(*kl), i e.,ﬁkl) = Tff(kl). It
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TZ;CI) = z(a(ky)), reject Hj= d(k,), -, ki, and go to the second step with k, = d(k;) —1;

otherwise, stop testing and declare no dose level as the MED. Generally, at the 2th step, set

1
ki=d(k_,)—1 and a(ki)=1—(1—a)k‘- Let d(k;) be the antirank of Izkki), where T(Z)

is the maximum of Tf, 7?,--3 17: If -’Z?k,-) or Zf{(m = z(a(k;)), then reject H,,
Jj= d(ki ), k; and go to the {2+ 1)th step; otherwise, stop testing and declare MED=
d(ki ) —1. When testing stops at the mth step, estimate the MED as d(km_l).

3. An example

We consider the data set in a table in order to calculate statistic in the proposed procedure.
Table 1 illustrates the type of data observed that response variables are measured with a set
of ordered categories. In Table 1, five ordered categories ranging from ‘death’ to 'good
recovery’ describe the clinical outcome of patients who experienced trauma. In literature on
clinical care, these five categories are often called the Glasgow Outcome Scale (GOS). It
includes four treat groups, that is, a control and three treatment doses. The three intravenous
doses for the investigational medication are labelled as low, medium and high. The original
data have been modified somewhat to protect the identity of the trial (Chuang-stein &
Agresti, 1997).

Table 1. Responses on the Glasgow Outcome Scale
from a clinical trial with a placebo and three treatment groups labelled
as low dose, medium dose and high dose

Treatment Glasgow Outcome Scale Total
dose Death Vegetative Major Minor Good

state disability disability recovery
Placebo 59 25 46 48 32 210
Low 48 21 44 47 30 190
Medium 44 14 54 64 31 207
High 43 4 49 58 41 195

The statistics for this test are obtained in the following : 77 = 206835, 7, = 45827, 1 =
66019, p(7y) = 19950, u(7Z3) = 41400, u(7Ty) = 591825, o(7Ty) = 1125953, o(T;) =
1995013, o(73) = 273866, 17 = 0651, T3 = 2219, T3 = 2.496. First of all, k=3, the
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maximum of 77,7y, T3 is T3 and d(3)=3. As T =2.496 = z(0.017) = 2.12

1

(0.017 = 1_(1_0.05)3) at the level o = 0.05, we go to the second step with ky=2. Note
1

that d(2)=2 and 77 = 2.219 > 2(0.025) = 1.96 (0.025 ~ 1 — (1 —0.05)2), but 73 = 0.651

1
< 2(0.05) = 1.645 (0.05 ~ 1 —(1—0.05)1). Consequently, we conclude that, at the level
a = 0.05, the MED is the second dose level.

4. Simulation
4.1 Design of the simulation study

We compare powers of two procedures, Williams’ test and the proposed test. Empirical
FWE and powers were considered for comparing two procedures, defined as follows :

{number of rejecting true H,, }

FWE= oy ,
replications

Power — {number of (MED= MED) }
replications

This study was conducted for k=3 and 5 treatments with a zero-dose control, with
ng=mn;=-=n,=n= 10, 20, 30, 50 and 70 observations per sample in case. And what is
more, we performed for c¢=3 and 5 response categories per each treatment. In each case, we
used 10,000 replications in obtaining the various power estimates and employed the 5%
significant level.

In order to obtain data for the simulation study, appropriate binomial and multinomial
deviates were derived by using the SAS routines RANBIN and RANTBL, respectively.

4.2 Simulation results

In the simulation results for powers of binary responses ( Table 2 - Table 4 ), they are
different as the configurations of the treatment effects; step-type, linear-type and umbrella
patterned configurations., Here, we describe only the case of k=5 treatments with a control

because simulation results are similar to the case of k=3. First, for step-type ordered

configurations, the better result is given in the proposed test when MED=2 and 3. Note that,
as compared with k=3, powers is strong in cases of MED=3 although n is small. Second, we

consider linear-type ordered configurations. When the treatment effects have a monotonic
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ordering of equal differences, Williams’' test provides the excellent power like k=3 treatments,
because it makes explicit use of the monotonicity assumption. However, the proposed test
always is more powerful for MED=3. Under this type configuration, however, no powers of
two procedures are superior. Third, the proposed test has excellent power when the treatment
effect difference between a control and the treatment with MED for umbrella patterned
configurations is large. On the other hand, Williams’ test has high power in the case that the
treatment effect difference between p and p+ 1 is small, where p is the peak of the umbrella.

We discuss briefly the simulation results obtained for the cases of ordered categorical
responses ( Table 5 - Table 8 ). The powers become decreasing when MED = 4 and 5 like
cases for binary responses. As a whole, they maintain surprisingly high power. Generally the
FWE of proposed test is well controlled. In the cases of k=3, however, the FWE of two
procedures is low ( < 0.01 ) for n=10 and MED=2 and the FWE for MED=4 and 5 has high

values ( > 0.06 ) in the cases of k=5.

5. Discussion

We comment the problem of the FWE. Contrary to our expectations, the FWE for Williams’
test and the proposed test are not entirely controlled. We guess that the reason is caused by
normal approximation. Typically, the normal approximation is not as close in the presence of
ties as it is for the same group sizes without ties. Hence we are in need of studies for a
better approximation to the null distribution than the normal approximation. This problem is
left for future study.

In conclusion, the proposed test for binary or ordered categorical responses has several
important advantages. First, the proposed test involves only the two-sample Mann-Whitney
statistics, which are very easy to compute in terms of the established nonparametric
procedures. Second, this test has an appreciable power performance compared to Williams’
test. Finally, the proposed test could be extended to take into account ordered categorical
responses.
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Table 2. Estimated power and FWE3)
for «=.0b, k=5, step-type configurations

True power FWE
n 6 ©, ©6, ©, ©, 6, MED WILM PROT WILM PROT
10 01 06 06 06 06 06 1 0.6560 05546 - -
0r 01 06 06 06 06 2 06737 0.7824 0.0250  0.0193
01 01 01 06 06 06 3 0.6830 0.8268 0.0696 0.0432
01 01 01 01 06 06 4 0.7731  0.8349 0.0322 0.0512
01 01 061 01 01 06 5 0.8071  0.6219 0.0436  0.0621
30 01 06 06 06 06 06 1 09969 09919 - -
01 01 06 06 06 06 2 0.945Z 0.9470 0.0520 0.0517
01 01 01 06 06 06 3 09381  0.9487 0.0590  0.0506
01 01 01 01 06 06 4 09529 0.9100 0.0461  0.0899
01 01 01 01 01 06 5 0.9499  0.9400 0.0481  0.08%0
5 01 06 06 06 06 06 1 1.0000  1.0000 - -
01 01 06 06 06 06 2 0.9518 0.9523 0.0482  0.0477
01 01 01 06 06 06 3 0935 09481 0.0644 0.0519
01 01 01 01 06 06 4 09576  0.8906 0.0424  0.0920
01 01 01 01 01 06 5 09500  0.9061 0.0500  0.0809
WILM : Williams’ test, PROT : proposed test
Table 3. Estimated power and FWE
for @=.05, k=5, linear-type configurations
True power FWE
n 8 ©, 06, 6; 6, ©; MED WILM PROT WILM PROT
10 01 02 03 04 05 06 1 0.0440 0.12%4 - -
01 01 03 04 05 06 2 0.2067 0.2455 0.0079  0.0081
01 01 01 04 05 06 3 0.3818  0.4838 0.0450  0.0358
01 01 01 01 05 06 4 0.6464 0.5877 0.0328 0.0515
30 01 02 03 04 05 06 1 02554 0.2171 - -
01 01 03 04 05 06 2 05610 0.5670 0.0494  0.0435
01 01 01 04 05 06 3 0.8467 0.8719 0.0428  0.0490
01 01 01 01 05 06 4 0.9372  0.9230 0.0455 0.0718
5 01 02 03 04 05 06 1 0.3766  0.3027 - -
01 01 03 04 05 06 2 0.7749  0.7423 0.0495  0.0407
01 01 01 04 05 06 3 09345 0.9417 0.0477  0.0508
01 01 01 01 05 06 4 09493  0.7535 0.0500 0.0716

3) For MED=1, the FWE entry equals .0000 for all procedures, and is hence omitted.
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Table 4. Estimated power and FWE
for a=.05, k=5, umbrella patterned configurations

True power FWE
n 0, ©, € ©6; 6, 6, MED WILM PROT WILM PROT
10 01 01 04 05 06 05 2 03781 04342 0.0192  0.0096
01 01 04 05 06 01 2 01749 04281 00128  0.0095
01 01 05 06 05 04 2 04568  0.6292 0.0178 0.0113
01 01 05 06 01 o1 2 0.2136  0.6180 0.0133  0.0119
01 01 01 05 06 05 3 0.5283  0.6912 0.0670  0.0419
01 01 01 05 06 01 3 02158 0.6812 0.0779  0.0402
30 01 01 04 05 06 05 2 0.8248  0.8596 0.0552 00513
01 01 04 05 06 01 2 0.6607  0.8567 0.0546  0.0521
01 01 05 06 05 04 2 0.9161  0.9348 0.0533  0.0528
01 01 05 06 01 01 2 0.2990  0.9352 0.0477  0.0515
01 01 01 05 06 05 3 09176  0.9407 0.0599  0.0524
01 06 01 05 06 01 3 0.7369  0.9399 0.0737  0.0519
5 01 01 04 05 06 05 2 09289 09374 0.0517  0.0498
01 01 04 05 06 01 2 0.8857  0.9381 0.0543  0.0512
01 01 05 06 05 04 2 0.9466  0.9494 0.0522  0.0503
01 01 05 06 01 01 2 05662  0.949% 0.0498  0.0502
01 01 01 05 06 05 3 0.9398  0.9521 0.0594  0.0477
0.1 01 01 05 06 01 3 0.8946 0.9475 0.0653 0.0522
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Table 5. Estimated power and FWE
for «=.05, k=3, ¢=3

true Dose
MED level 3 by F 2 n Power FWE
1 zero-dose 0.6 0.3 0.1 30 0.9997 -
dosel 0.1 0.3 06 50 1.0000 -
dose2 0.1 0.3 0.6 70 1.0000 -
dose3 0.1 0.3 0.6
2 zero-dose 0.6 0.3 0.1 30 0.94%4 0.0506
dosel 0.6 0.3 0.1 50 0.9506 0.0494
dose2 0.1 0.3 06 70 0.9497 0.0503
dose3 0.1 0.3 0.6
3 zero-dose 0.6 0.3 0.1 30 0.9521 0.0479
dosel 0.6 0.3 0.1 50 0.9498 0.0502
dose2 0.6 0.3 0.1 70 0.9481 0.0519
dose3 0.1 0.3 0.6
Table 6. Estimated power and FWE
for «=.05, k=5, ¢=3
true Dose
MED level b, 23 b3 n Power FWE
1 zero—dose 0.6 03 0.1 30 0.9993 ~
dosel 0.1 0.3 0.6 50 1.0000 ~
dose2 0.1 0.3 06 70 1.0000 ~
dose3 0.1 03 0.6
dosed 0.1 0.3 0.6
doseb 0.1 0.3 0.6
2 zero-dose 0.6 0.3 0.1 30 0.9489 0.0510
dosel 0.6 03 0.1 50 0.949 0.0505
dose2 01 0.3 0.6 70 0.9513 0.0487
dose3 0.1 0.3 0.6
dosed 0.1 0.3 0.6
doseb 0.1 0.3 06 -
3 zero-dose 0.6 0.3 0.1 30 0.9486 0.0514
dosel 0.6 0.3 0.1 50 0.9523 0.0477
dose2 0.6 0.3 01 70 0.9496 0.0504
dose3 0.1 0.3 0.6
dosed 0.1 0.3 0.6
doseb 0.1 0.3 0.6
4 zero-dose 0.6 03 0.1 30 0.9243 0.0757
dosel 0.6 0.3 0.1 50 0.9268 0.0732
dose2 06 0.3 0.1 70 0.9228 0.0772
dose3 0.6 0.3 0.1
dosed 0.1 0.3 0.6
doseb 0.1 0.3 0.6
5 zero-dose 0.6 0.3 0.1 30 0.9149 0.0851
dosel 0.6 0.3 0.1 50 0.9150 0.0850
dose2 0.6 0.3 0.1 70 0.9159 0.0841
dose3 0.6 0.3 0.1
dose4 06 0.3 0.1
doseb 0.1 0.3 0.6
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Table 7. Estimated power and FWE
for a=.05, k=3, ¢=5

true Dose
MED level n by b b, bs n Power FWE
1 zero~dose 04 03 02 005 005 30 1.0000 -
dosel 005 005 0.2 0.3 0.4 50 1.0000 -
dose2 005 005 0.2 0.3 0.4 70 1.0000 -

dose3 005 005 02 03 04

2 zero-dose 0.4 0.3 0.2 005 005 30 09512 0.0488

dosel 04 0.3 02 005 005 50 09504  0.0496
dose2 005 005 02 0.3 04 70 09505 0.0495
dose3 005 005 02 0.3 0.4

3 zero-dose 0.4 0.3 02 005 005 30 0.9500  0.0500
dosel 04 03 02 005 005 50 09505 0.0495
dose2 04 0.3 02 005 005 70 095496  0.0504

dose3 005 005 02 0.3 04

Table 8. Estimated power and FWE
for a=.05, k=5, c=5

true Dose
MED level b, by § 2 by D5 n Power FWE
1 zero—dose 04 03 0.2 005 005 30 0.9998
dosel 0.05 0.05 0.2 0.3 0.4 50 1.0000 -
dose2 005 005 02 0.3 0.4 70 1.0000 -

dose3 005 005 02 0.3 0.4
dosed 0056 005 02 0.3 0.4
doseb 005 005 02 0.3 04

2 zero—-dose 04 0.3 0.2 005 0.05 30 0.9516 0.0482
dosel 0.4 0.3 0.2 0.06 005 50 09548 0.0452
dose2 0.05 005 0.2 0.3 0.4 70 0.9496 0.0504
dose3 005 005 02 0.3 04
dose4 005 0.05 0.2 0.3 04
doseb 005 005 0.2 0.3 0.4

3 zero-dose 04 0.3 0.2 005 0.05 30 094838 0.0512
dosel 04 0.3 0.2 003 005 50 09484 0.0516
dose2 04 0.3 0.2 005 005 70 0.9508 0.0492
dose3 005 005 0.2 0.3 0.4
dosed 005 005 0.2 03 0.4
dosed 005 005 0.2 0.3 0.4

4 zero-dose 0.4 0.3 02 005 005 30 09257 0.0743
dosel 04 0.3 0.2 005 005 50 09254 0.0746
dose2 04 0.3 0.2 005 00 70 09254 0.0746
dose3 04 0.3 02 005 005
dose4 005 005 0.2 0.3 0.4
dosed 005 005 0.2 0.3 0.4

5 zero—dose 04 0.3 0.2 005 005 30 0.9151 0.0849
dosel 0.4 0.3 0.2 005 005 50 09168 0.0832
dose2 0.4 03 0.2 005 0.0 70 0918 0.0815
dose3 0.4 0.3 0.2 005 005
dosed 04 0.3 0.2 0.05 0.05
dose5 005 005 0.2 0.3 04




