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Abstract

Several statistical methods are introduced o analyze the accelerated failure time data.
Most frequently used method is the log-linear approach with parametric assumption.
Since the accelerated failure time experiments are exposed to many environmental
restrictions, parametric log-linear relationship might not be working properly to analyze
the resulting data. The models proposed by Buckley and James(1979) and Stute(1993)
could be useful in the situation where parametric log-linear method could not be

applicable. Those methods are introduced in accelerated experimental situation under

the thermal acceleration and discussed through an illustrated example.

1. Introduction Often one desires to estimate the
relationship between some measures of

Accelerated life testing of products product performance and one or more
under higher stress levels  without stresses, environmental or other independent
introducing additional failure modes can variables. Typically, performance measure-
provide significant savings of both time ments are obtained at a number of stress
and money. conditions. The resulting data are used to

estimate relationship between performance

; and stress. The estimated relationship,
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which smooths the data, is then used to
estimate performance at one or more
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conditions.
It may happen that the performance
censored;, that is,

data are some

performance values at some stress
conditions are known only to be above or
else below some value. Such data often
arise when the dependent (performance)
variable is time to failure. The time to
failure of each unfailed unit is known
which

represents its survival time at the time of

only to exceed some value,
the analysis.

Several approach have been suggested
regression models  to
Nelson and Hahn(1972,
1973) proposed to estimate relationships
between stress and product life from the
Later Hahn and

Schmee(1979) proposed an iterative least

fitting  linear

censored data.

censored data.

square estimation and showed that it was

as efficient as maximum likelihood
estimator, but easier to use.

Buckley and James(1979) proposed an
extension of least

squares for fitting

multiple regression models when the
response variable is right-censored as in
the analysis of survival time data. The
Buckley-James method has been shown
to have good statistical properties under
usual regularity conditions(Lai and Ying,
1991).

Stute(1993) proposed a weighted least
square method and adopted a candidate
method replacing Cox(1972)'s proportional
hazard model in biometric fields(Orbe,

Ferreira, Nunez-Anton, 2002).

Buckley
Stute’s have been in

and James’ estimator and

common in
biometric fields. In this paper we focus
the generalization of Buckley and James’
estimator and Stute’s under accelerated
life testing. This could be viewed as a
nonparametric generalization of Hahn and
Schmee(1979)’s  method. In

statistical aspects of

section 2,
accelerated life
testing is introduced and the need of
nonparametric methods are emphasized in
life testing field. Current nonparametric
methods are modified and discussed in
section 3 and an example 1s illustrated
with implications in section 4.

2. Statistical aspects of
accelerated life testing

Accelerated life testing is achieved by
subjecting the test units to conditions
that are more severe than normal to
If the
extrapolated to the normal

shorten lives. results can be
conditions,
they vield estimates of the life under
normal conditions. Correct analysis of
data gathered via such accelerated life
testing would yield parameters and other
information for the product life under use
stress conditions.

Statistically speaking, there are two
major concerns in accelerated life testing;
the life distribution and the relationship
between failure times and stress levels.

Analysis of accelerated life test data,
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then, consists of an wunderlying life
distribution that describes the product at
different stress levels and a stress-life
relationship that quantifies the manner in
which

different stress levels.

life distribution changes across

2.1 Life distribution

The first step in performing an
accelerated life test analysis is to choose
life distribution. Although it is rarely
appropriate, the exponential distribution,
because of its simplicity, is very
commonly used as the underlying life
distribution. The Weibull and log-normal
distributions, which require much more
involved calculation, are more appropriate
for most uses.

Whenever we assume that the data
follow a specific distribution, we also
assume risk. If the assumption is invalid,
then the

confidence

confidence levels of the

intervals or the hypothesis
tests will be incorrect. The consequences
of assuming the wrong distribution may

prove very costly.

2.2 Life—stress relationship

When
manufactured

discussing the life of
goods generally, the
expression ” #° C rule” can be used.
This expression can be used as in the
"10°C rule” to mean that a 10°C rise in

the ambient temperature cuts life in half,

a 20°C rise in ambient temperature cuts
in life in one quarter, etc.

The Arrhenius model is widely used
for acceleration of temperature-related

stress. The Arrhenius life-stress
relationship is given by:
R

L(V)= Ce ",
where
L represents a quantifiable life measure
like median life or B(10) life,
V represents the stress level (formulated
for temperature and temperature values in
absolute units like degrees Kelvin,
C is one of the model parameters to be
determined, (C > 0),
B is
determined.

another model parameter to be

The parameter B can be replaced by :
E
_ La

B = K

where

E, represents activation energy,

K represents Boltzman’s constant (8.623

x 107 eVK'.

3. Log-linear regression
with censored data

3.1 Schmee and Hahn estimator

Assume the standard simple regression

model within the region of interest

between the stress x and the average

time to failure , for some device on life
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test at that stress, i.e.,

(1) M= BO + le7

where B and unknown

B, are
parameters. One or more units are tested
at each of several stresses. The resulting
data consist of the failure times on the
failed units or "run-outs.”

More formally, the linear regression

model (1) is

2) =B+ Bx+e, (G=1,"n
where x 1S a given stress and the ;S

are independently and identically

distributed  with distribution

function, mean zero and variance 2.

normal

The response variable ¢;s are sometimes
log—-transformed. One could use other
known distribution of ¢, such as

extreme value distribution.

Since we usually only observe
vy, = min(¢;, ¢;) due to some restricted
experimental situations, where ¢;s are

censoring times, the usual least square
approach is not applicable.
experiments,

In many accelerated

various censoring patterns  occurred.
Mostly both type I and type III censoring
happen simultaneously. The simplest case
is type I censoring, which is usually
through the

However, if we consider certain kind of

assumed experiment.

failure mode, then type III censored data
should be considered together.

Hahn and Schmee(1979) assumed the
case of Type I censored data. Let ¢,
denote the censoring time for a particular

run-out at stress x. Then, using the

well-known properties of the truncated
normal distribution, expected value g of

the failure time for this unit is

(3) 4t =

where

e+ oi(2)/[1— 0(2)]

@ z= (c,—pdlo

and ¢(z) and @(z) denote the ordinate
at z and the area to the left of z of a
standard normal distribution, respectively.
For this
proposed  an

situation, Hahn and Schmee
iterative  least  square
estimate  the
and B, by

freating censored observation as if they

procedure; re., first,

regression coefficient g,

were uncensored. Secondly, estimate
and replace it with the
Then obtain a
revised least square estimators using the

replaced

equation (3)
censored observations.

observations.  Repeat these
procedures until convergence is achieved.
The variance of the estimated regression
coefficients is also obtained by standard
regression method. They asserted that
their method is very comparable to
maximum likelihood estimation and easier

to obtain the estimators.

3.2 Buckley and James estimator
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Buckley and James(1979) considered the
same form of linear regression model (2)

without assuming normality; ie., g5 are
distributed with an
distribution function F, mean zero and

Buckley and James(1979)
define the pseudo random variable

unspecified

finite variance.

(5) y =

where

yi&; + EQit> v)(1—48),
8;=I(t;<c;), the

shown that

censoring
indicator. It can Dbe
E(y;) = E(¢t). The

replace y, for censored observations with

idea then 1is to

v;. To do this we need to estimate the
quantity E(¢,t;> y;) for such y;. Now
6 EX( tlt:> y) =

[ dF '
yi— By~ Bix ]-_F(yz—ﬁo_—ﬁlx)

to obtain the

In order estimator of

E(t|t;>y;), we need an estimator of
F. The usual estimator of F is Kaplan
and Meier(1958)'s estimator; i.e.,

~ n,—d;\°”

Fn=1- JI |24 ) ,
where ;= #{i:y;>2y} and q; is
the number of failures at y, with
times

ordered failure

YOSY@S SV and the
corresponding § Gy
One can estimate (6) like

(7 yi= yo;+

~ ;ngjej
:lei+ 1__ ’F( ei)

w;s are steps of Kaplan and

(1-4,

where

Meier’s estimator like
_ e
n;—d; )

(8 Wi= ( 7.

[ 2
= n,-

with the residual ¢, = y,— B x.

3y

Once we observe y?, then a reasonable
estimate of B, would be
S(xi— 2)yi(B)

>z~ x)*

7

27)1:

Replacing y} by their estimates and
taking into account that estimates depend
on 31,

based on these are then performed until

we need iterations. Iterations

the sequence of 781 meets a convergence

criteria, for instance the difference of
successive two estimators are less than
0.001. After we obtain the convergent
’Bl, then we can have Z’O = _3.;*—'5\1;.
In this method of fitting regression
model to censored data, the censored
observations are replaced selectively by
the wvalues predicted by the currently
fitted model where all the observations
are treated as if they were uncensored.
However, the predicted value for the g
-th censored observation is often less

than the censoring time for that
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observation, which 1is not admissible.
Chatterjee and McLeish(1986) suggested
to retain ¢, like
© yt = ci, if c,'>.y’§_
v;, otherwise

The Buckley and James method can be
viewed as a nonparametric analogue of a
normal theory technique due to Hahn and
Schmee(1979).

Buckley and James gave the variance
estimator of 7, without mathematical

justification by

—

o}

= —_ —YBI
var(B) = Zl(xi_ xu)z ’

where

1 n 2

0% = (n,—2) lzl(&'ei—%;l]iajej) :

and g, 1s the number of uncensored

observations. The variance estimator of

By s
regression method.

Weissfeld and Schneider(1986) proposed

the alternate of 42 like

following by the standard

P S [ —
W (n,—2)n
n

n 2
221( aie% +(1— 35);.“}/@?) :

This estimator, unlike ?723], uses the

information in both the censored and
uncensored observations. Weissfeld and

Schneider showed that BZWS tended to

have a smaller mean squared error than

~2
OB]‘

3.3 Stute estimator

Stute(1993) proposed the weighted least
square estimators by minimizing

;wz’(y(i) - 50_31961‘)2’
where y,s are defined in (8) and x, is

the corresponding value of Y- The

weighted least square estimators are
easily obtained ;
~ lew,(xz-— %)Y ()
B = =7
! lez(x i X)2

Bo= y— Bix-
Stute’s estimator can be viewed as the
generalized least square estimator such as

B = (XTWwX) 'XTwa .,
where X is the design matrix, X7 is the
transpose of the matrix X, W is a
diagonal matrix with the weights i given
: _ T
m (8) and Ny ™ (y(l),---,y(n)) .

Stute(1993) studied the consistency of

this estimator and its  asymptotic

normality. The variance of regression

coefficient R* is

(10) var( B*) = (271X, 27,
where $ = XTWX and 3, = X'W?X.
The estimated variance of g2 can be

. . ~y
obtained like ¢%;.
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Stute also showed that his estimator

outperforms the Buckley and James
estimator in his simulation study where

censoring occurs in the same pattern of

life times.

Buckley and James's estimator and
Stute’s allow the estimation without
assuming any distribution for failure

times. Furthermore, those two methods
are based on solid statistical background
such as least square method. Therefore,
they are interesting alternatives to the
well-known parametric approach.

4. Illustrated Example

Table 1 gives the results of
temperature accelerated life tests on
electrical insulation in 40 motorettes,

given by Hahn and Schmee(1979). Ten
motorettes were tested at each of four
temperatures. Testing was terminated at
different
resulting in a total 17 failed units and 23

times at each temperature,

censored ones. The model used to analyze

the data assumes that:

(1) for any temperature, the distribution
of time to failure is lognormal or
unknown;

(2) The standard deviation g is constant;

(3) the mean of the logarithm of the time

to failure Ly holds the Arrhenius

relationship to the stress levels.
An Arrhenius-lognormal model is fitted

to the data in this example. That is, the
data are assumed to have the lognormal
(base e) distribution, and the location
parameter of the lognormal distribution is
assumed to depend on the centigrade
through  the  Arrhenius

' ) _ 11604
relationship (1) where x = o C+273.2

1s reciprocal absolute temperature. The

temperature

graphic output consists of the probability
plots of the data and the distribution fit
lines.

The wusual accelerated life testing
analysis by the common commercial
software like MINITAB under the

assumptions (1) through (3) produces the
following output by maximum likelihood
estimation.

[Table 1] Life data (unit : hrs)

150, C | 170, C | 190, C | 220, C
8064+ 1764 408 408
8064+ 2772 408 408

3064+ 3444 1344 504
8064+ 3542 1344 504
8064+ 3780 1440 o04

8064+ 4860 1680+ 528+
8064+ 5196 1680+ 528+
8064+ 0448+ 1680+ 528+
8064+ 2448+ 1680+ 528+
8064+ 5448+ 1680+ 528+

(+ : censored data)
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Regression Table
Predictor DF Coef Std Err
INTERCPT 1 -13.858 2.180
X 1 0.85527 0.08663
SCALE 1 0.5968 0.1090
Probability Pict (Fitted Arrhentus) for time ‘
Lognormal base e Distibution - L Estimates i
Censorng Column i censor |
99 — 1% ‘
170 |
1D I
%5 4 —_ 220 i
@4 ‘
LeceionScs  AD* FK |
2 95972 058 ' OM0 |
704 85%7 0568 27 13 |
¥ awd 75715 0598 392 55
@ 50 4 v 52679 0538 395 &5 |
£ o v 1
24 . . |
2 ' /,} ‘
10 4 ¢ i
_m 15 ) 103520

[Figure 1] Probability Plot

From the plot one can easily find out
that the slope of the estimated line is a
bit biased. Probably a bit steeper line
would be more appropriate. If an
Arrhenius-Weibull

similar  plot

model is tried, the
shown. The
induces  this

would be
parametric  assumption
phenomenon. One can often see this kind
of happening in practice. More reliable
approach would be needed, which is not
affected much by the assumed parametric
distribution.

Hahn and Schmee's method shows a
pretty similar result as MINITAB output.

It’s because they also assume lognormal

distribution. It 1s worth to note that the
standard errors of the estimates are
smaller than their maximum likelihood

estimators.

Regression Table

Predictor OF Coef Std Err
INTERCPT 1 -13.397 1.3270
X 1 0.8342 0.052
SCALE 1 0.4706 0.051

Buckley and James’ method shows a
bit different results. The slope estimator
likelihood
and Schmee's

1s  steeper than maximum
and Hahn

method. However, the scale estimator and

estimator

its standard error is slightly larger. It's
because this dos not assume a particular
life distribution.

Regression Table

Predictor OF Coef Std Err
INTERCPT 1 -15.6736 0.79310
X 1 0.9195 0.03256
SCALE 1 0.6258 0.09076

Stute’s method shows a bit slower
slope with moderate scale estimator
Stute
mentioned that his slope estimator has

comparing to other methods.
smaller mean squared errors than Buckley
and James estimator in his simulation

study and it worked this example again.
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Regression Table

Predictor DF Coef Std Err
INTERCPT 1 -12.3399 0.80504
X 1 0.7777 0.03146
SCALE 1 0.6066 0.08443

All mentioned methods have their own
benefits and shortcomings. But
nonparametric methods like Buckley and
James’ method and Stute’s seem to be
superior to parametric methods like
maximum likelihood estimator and Hahn
and Schmee's estimator since they yield
with  moderate

quite similar results

standard errors without assuming
distribution. It is also
worthwhile to note that the calculation of
Stute’s

meanwhile  all

particular life

estimator is the  simplest,

other methods need

iterations with proper convergence

criterion.

5. Conclusion

Accelerated testing, when properly

modeled and analyzed, yields desired
information on product life or performance
under normal use. Analysis of accelerated
life test data consists of an underlying
life  distribution and a  stress-life
relationship.

The life distribution enables assessment
of product reliability at any desired stress
assumed life

level. However, if the

distribution is invalid, then the statistical
inferences based on the estimation would
be incorrect and the consequences cause
huge cost.

Some interesting nonparametric
statistical methods were presented in this
paper. Buckley and James's method and
Stute’s,

introduced in biometric fields, have been

which are relatively well
rarely used in accelerated life testing
field. However, since they both are based
on well-known linear regression model
theory, practitioners would apply easily in
the data analysis. This is probably the
first paper to apply those methods in
testing field.  The
combination of the current method and

accelerated  life

proposed methods here gives engineers
the opportunity of
analysis in accelerated life testing area.

performing data

Larger sample sizes with  formal
experimental design should be explored
for sound results of both the accelerated
life test and analysis and more theoretical
studies of further applications would be

needed.
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