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ABSTRACT

In this paper, we propose a two-step noise compensation algorithm in feature
extraction for achieving robust speech recognition. The proposed method frees us from
requiring a priori information on noisy environments and is simple to implement. First, in
frequency domain, the Harmonics-based Spectral Subtraction (HSS) is applied so that it
reduces the additive background noise and makes the shape of harmonics in speech
spectrum more pronounced. We then apply a judiciously weighted variance Feature Vector
Normalization (FVN) to compensate for both the channel distortion and additive noise. The
weighted variance FVN compensates for the variance mismatch in both the speech and
the non-speech regions respectively. Representative performance evaluation using Aurora
2 database shows that the proposed method yields 27.18% relative improvement in
accuracy under a multi-noise training task and 57.94% relative improvement under a clean
training task.

Keywords : Spectral subtraction, Harmonics, Robust speech recognition, Feature
) vector normalization

1. Introduction

The range of automatic speech recognition (ASR) system used is progressively
widening from the laboratory environment to the real environment; for example, for
automobile, telematics, PDAs, mobile phones and so on. However, the performance of ASR
system is drastically deteriorated by unexpectedly changed noisy environments and channel
distortion. Performance deterioration can be attributed to the mismatch problem between
training condition and testing condition. To solve this problem, many noise compensation

techniques have been introduced in the last three decades. Most of the techniques
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introduced involve some type of noise compensation in feature extraction because of
flexibility rather than the HMM model based strategies. The techniques to solve the
mismatch problem can be categorized into two principal approaches. First is the spectral
subtractive-type of algorithm performing noise suppression using short-time spectral
amplitude, such as spectral subtraction, nonlinear spectral subtraction and the Weiner
filter. The other approach is the feature compensation algorithm such as cepstral mean
normalization or vector Tayler series. This paper presents a new spectral subtraction
scheme based on the observation that even though speech is heavily corrupted by noise,
the shape of spectral harmonics of speech can be as well preserved as when speech is not
corrupted. In addition, we achieve further improvement in the performance by applying the
weighted variance FVN (Feature Vector Normalization), which essentially multiplies an
appropriate weighting factor to the variances of the speech and the non-speech regions
respectively. This procedure compensates for the unreliable variance estimation due to

small sampling.

2. Spectral Subtractive-type Algorithm

2.1 Power spectral subtraction

When speech signal x(n) is corrupted by background additive noise b(n), the corrupted

speech can be expressed as follows:

y(n) = x(n) + b(n) )

If speech signal x(n) and noise signal b(n) are assumed to be uncorrelated, in

frequency domain the estimate of clean speech signal can be represented as follows:

| X(R1P=IY(RP~| BhI 2)

However, the estimated noise signal should be weighted in order to reduce the musical

noise (Berouti et al., 1979). The clean speech is estimated as follows.

e 2= YO T ) v aBon v
AY(R)2 otherwise (3

Instead of power spectrum, its magnitude spectrum can be made available. With
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over-subtraction factor ¢ and floor factor 8 this algorithm regularizes the trade-off

between noise reduction and residual noise. Note that the enhanced short-time power

spectral amplitude |X(£)* depends on a posteriori SNR (Virag, 1999):
SNR o= | Y(B)I?/ | B B)| 2 )

2.2 Nonlinear spectral subtraction (NSS)

NSS algorithm is essentially a SNR dependent scheme that in subtraction, a minimal
over-subtraction factor is imposed on the high SNR region of frequency and also a
maximal over-subtraction factor is imposed on the low SNR region of frequency. NSS
algorithm reduces the distortion derived by subtracting the noise spectrum excessively
from speech the spectrum as described by the following expression (Lockwood and Boudy,
1992):

2[1 — _ok) \ . 2_ 2
X k)l2:[lY(k)l (1 TR 2) if | Y(R) 2 a®(k)> A Y ()]

AY(RI? otherwise 6)

where
@(P Kk @ t(k)r l ,B\t( k)l 2)= a ;(k)F(P t(k)y a t(k), | ’B\t( k)‘ Z), 6)

with

a (k)= max (1B, -
oD = T(BI2/IBY kN, ®
Y (DRE=AJ Y, [(B2+1=ADIYLAI?, 0.1<4,<0.5 ©)

where ¢ is the frame index.

Nonlinear function @(%) is calculated for each frame and can be chosen arbitrarily to
implement the notion that relatively greater subtraction is applied to the low SNR region of
spectrum and less subtraction to the high SNR region. @(k) is composed of two terms,
that is, the over-estimate of noise @{# and the nonlinear function F(p(#),a, (&, | B k¥).
Note that ©{#) refers to a biased estimate of the SNR at frame . F(p(#),a, (B, B k)I?)
refers to a nonlinear scheme and the core of its role resides in determining how to change

the subtraction factors with respect to #£#), noise estimate | B £} and over-estimate a{%).
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2.3 Problem formulation

As mentioned before, we can say that the subtraction factor @ provides a compensation
for this imperfect estimation of noise and the floor factor § guarantees a non-zero value
of each subtracted spectrum derived by over-subtraction. In general, the spectral
amplitude of speech components (e.g. spectral harmonics) is greater than that of noise or
the sidelobes among harmonics so that the existing algorithms are rather suitable for
reasonably high SNR (about 15~20 dB) noisy speech cases. However, it appears that in
the case of low SNR environments (especially 0~10 dB), such that the noise level is close
in amplitude to that of speech, there occurs an unnecessarily subtracted speech region or
less subtracted the noisy region in noisy speech spectrum. Consequently, instead of the(
mundane use of SNR as a criterion for subtraction, we need a new and better measure for
activating the subtraction procedure. In particular, the subtraction over spectrum method
requires a more accurate measure than mere SNR in order to apply the subtraction rule,
which is selective to speech-dominant region of spectrum vs. noise-dominant region of

spectrum.
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Fig. 1. Example spectrum of a speech frame (pronunciation /oh/ by female)

3. Harmonics-based Spectral Subtraction (HSS)

3.1 Speech dominant region vs. noise dominant region

In speech, it is observed that the voiced speech segment has peaks positioned
periodically in spectrum due to the vibration of vocal cords. These points are very critical
in speech sound perception. Fig. 1 illustrates this phenomenon with a sample spectrum of
speech frame capturing the pronunciation /oh/ in one utterance contained in Aurora?

corpus. Note that at the peaks, their amplitudes are far greater than the amplitudes at the
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points between adjacent small peaks, or sidelobes. Also, it is observed that the degree of
corruption by the noise in the peaks is not as much as the degree of corruption at the
points over the sidelobes. From this observation, it can be deduced that in the speech
spectrum, the speech-dominant regions exist over or near the peaks and the noise-
dominant regions exist over or near the sidelobes. However, the illustration as displayed
should not be mislead. It does not show, for example, that the speech is more corruptable
in some frequency regions. Fig. 1 illustrates that the degree of corruption in sidelobes can

be greater than that of speech harmonics.

3.2 Peak points detection and segmentation

It is known that the spectral harmonics are located at the points of multiples of
fundamental frequency (Hess, 1983). First, an using autocorrelation function, the indices of

local maxima in autocorrelation values are found. Among those indices, we find the
fundamental frequency fo by taking the reciprocal of the index that represents the

maximum value. Second, by applying the nonlinear smoothing method (Hess, 1983), / is
modified to better reflect the true fundamental frequency. This algorithm works well even
in high degree noisy environment. Autocorrelation function is expressed as follows
(Rabinar and Schafer, 1978):

1 N—1
()= N nZO a(m)x(n+1) (10)

We then establish the index as #p for the frequency bin that corresponds to /o. Using

k), the peak points (harmonics) #; are determined as %=k, hy=2ky hy=3k,
h;=Lky where L is the index of the last component of harmonics. Using this procedure,
we determine all harmonics in the spectrum of the input frame, which is assumed to be a
speech-dominant region. We illustrate the wvalidity of the proposed method with
spectrograms and the result of peak point detections in Fig. 2. For the purpose of
implementing the proposed scheme (Section 3.), the frequency axis is divided into several

non-overlapping bands in the following form.

k k y
o [ e g [ e hy, PP ]

3.3 Voice activity detection (VAD) and noise estimation

Note that in each input frame, whether it is the speech frame or not, the fundamental
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frequency is calculated. As a result, the value of autocorrelation is made available at each
frame. To begin with, we calculate the ratio of this value over the frame energy, since
this ratio appears to be a more effective measure, to distinguish the speech region from
the non-speech region, than the mundane energy measure. Then, two separate procedures
are employed for robust detection of speech vs. non-speech region. First, a smoothing
procedure is carried out. If this value is greater than the threshold 1.4#: -, defined by the

following expressions, the relevant frame is assigned to be a ‘speech frame’.

0.6
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Fig. 2. (a) Spectrum of the pronunciation ‘five, six, two, nine, nine, six, nine’ by female,
(b) Corrupted version by 5 dB car noise, (¢) Result of the harmonics detection

(')
K, >1.4th

t=1 then ‘speech frame' and

_ #)
th=0.95h -y +0.05 -5+ (12)

else ‘non-speech frame’ and
thy=th,_, (13)

Note that *; indicates the threshold of the tth frame, £: indicate tth frame energy and

#(7') is the autocorrelation value corresponding to the /5 of relevant frame.

Secondly, for frames determined as ‘speech frame', if the detected fundamental



Harmonics-based Spectral Subtraction and Feature Vector Normalization for ... 13

frequency is not in 50~600 Hz, then it is concluded as ‘non-speech frame’ once again. For
the noise estimation, we assume that any starting input speech is followed by a silence or
a background noise segment corresponding to 10 frames (about 100 ms). Then, if the input
frame is determined as ‘non-speech frame’, the estimated noise spectral magnitude is
updated as follows:

I BRIP=25B ,_ (BI?+ (1= Y A2, 0.65<45<0.998 (14)

where ¢ is the frame index and k is the index of FFT bins and we use A5=0.95,

34 Spectral subtraction
3.4.1 Speech frame

In order to implement the proposed scheme, we design the following simple linear

function.

k,
if k=1, 1] or kt—:—[h,_1+—20-, hl], then

7(k): amin_aMA]f (hI_k)+aMAX

b= h1—1+—zi) , (15)
8(13): BMAX_BmZ (hl—k)_*_ﬁmin

hl_(hl—l-i_%) (16)

k
i kE[h,' h,+7°] or he|n, LELdEr 0]

7(k)=—%—:@—(h,-—k)+a min

(hz'*'_jm)_h/ , 17
OB =M= — )+

(h1+_2_ —hy . (18

where /=1,2,...,L and L is the index of te last component of harmonics.
y(k) applies the maximum over-subtraction factor to the midpoint at each component.
Then, the over-subtraction factors of points existing in the interval between those points

are interpolated linearly. In contrast, &(%) applies the maximum floor factor to each
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harmonic component and the minimum floor factor to the midpoint at each component.
Then, other floor factors between these points are generated by linear interpolation.

In this procedure, we set @ yax =8, @ min =1, Byax=0.15 and B min =0.05, In the case
of operation with FVN, we use @yax=2, @ mn =1, B4ax=0.3 and B mn =0.1. Finally,

the proposed subtraction rule can be represented as follows:

YO 21— LB i y(m) 2= k) > 8CR) V(A 2
IR k)= 0]
S(R) Y (k)| 2 otherwise (19)

3.4.2 Non-speech frame

We apply the subtraction rule in the same way as conventional methods using Eq. 3

with @ yax and ﬁmin.

4. Feature vector normalization (FVN)

4.1 Conventional FVN

This method assumes that the feature vector goes through an affine transformation due
to channel distortion and additive background noise. So, if we can get these transform
matrix A and bias component b, we can obtain the feature vector uncontaminated, by

inversely transforming the noisy feature vector.
x=A""y-b (20)

where b is noisy feature vector and x is clean feature vector. Consequently, FVN (Viikki
and Laurila, 1998) enables the distribution of feature vectors in both conditions to be
similar to each other so that the mismatch problem can be solved. We illustrate the
concept of FVN in 2 dimensions in Fig. 2. If we assume one more thing, in that each
component of feature vectors is uncorrelated and has Gaussian distribution, it simply

becomes the normalization procedure of single Gaussian random variable.
T D=5t (ye(D~me (D), (21)

where C means cepstrum and % ¢(# is the ith component of normalized version of the

input feature vector y. Note that 7 (9 and s (#) indicate mean and standard deviation
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for each feature vector component i, respectively.

The normalization coefficients 7 () and s (2 are typically calculated as follows:

N
m(i) = —lN Z:ly c. LD (22)

1 & - 2
Sc(l):\/‘ﬁ ZZ.I(J’ c.(D)—m(D)) (23)

where N is the value of frame length, which corresponds to an incoming utterance to be
recognized in experiments. The mean value becomes reliable when it is calculated for a

long period, say, over 2 seconds.

X DOy X iy
speach speech
feature $ feature
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x o

x XX 7]
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e
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Fig. 2. Concept of FVN illustrated by feature vector X =[x, x,]7 (a) each
distribution is separated (b) each distribution is located closely by FVN

4.2 Problem formulation

There is a mismatch problem when applying the inverse transform due to the
difference in mean and variance between the speech region and the non-speech region,
especially in noisy environments. To resolve this mismatch, an accurate mean and
variance estimator during even very short periods should be provided for each region of
the input signal. However, our preliminary experiments have shown that the estimated
mean and variance using short periods are unreliable and using prior information of nbisy
speech data, is not helpful in resolving the mismatch problem. Furthermore, in the case of
mean, the degree of difference is much more severe than in the case of variance. As a
result, we modify the conventional FVN by applying a multiplying factor to correct the
variance while the mean is fixed. The motivation for using this procedure is that variance
is highly dependent on the mean and badly estimated mean value degrades the overall

performance.
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4.3 Weighted variance FVN

2 .
Assume that 5% s/() and $7 no(?) denote the variance of speech frames and non-

speech frames respectively. Then,
N- &)= Ngp- SzC,SP(i) +Npo- SZC,Nt)(i) (24)

where Nsp and N o are the numbers of speech frames and non-speech frames

respectively. We can rewrite Eq. 24 in the following simple form:

Szc, sp(d) = 52(:( i)+ 0sp (25)
0 e —L ( N— 5% no(2) )
P Ngp s%(2) (26)

Also, in the case of non-speech region,

s no(D)=s2(D) - 8 o @0
g —_1 ( N=s% op(2) )
No™ Nyo 0) (28)

Using Eq. 21 and 25~28, the normalized components in each region are as follows:

%e sfkD=sclsp * (v¢ sp(2) = m () (29)

x c,No(2)=55.}vo (¥ o no(D—mc (D) (30)

Since each variance calculated with only a single utterance recognized is unreliable due
to the small quantity of data, we multiply the standard deviation by a constant ¢ sp=1.96
and 0sp=1.44 determined empirically. As a result, the variance used in Eq. 21 has a
weighted form as shown by Eq. 29 and 30. Note that we apply Eq. 29 and 30 for testing
only. Speech/non-speech discrimination is applied using enhanced energy obtained by HSS
and Eq. 12 and 13.



Harmonics-based Spectral Subtraction and Feature Vector Normalization for ... 17

5. Experiments

5.1 Experimental conditions

All experiments are conducted by Aurora 2 evaluation procedure and under continuous
digits recognition tasks. Test sets are reproduced using TIDigits of which the entire
speech data are downsampled to 8 hKz and various realistic noises are added artificially.
Feature vector order is 39 and composed of 13 order static MFCC (cl~cl2+Ilog energy),
its derivatives and accelerations. For comparison, a spectral subtraction algorithm (Berouti
et al.,, 1979) and a nonlinear spectral subtraction algorithm (Lockwook and Boudy, 1992) is
evaluated.

5.2 Experimental results

‘Avg’ denotes the mean value of word accuracy over 0~20 dB. From Table 2, the
average word accuracy of the proposed HSS method shows that it is superior to other

spectral subtraction approaches.

Table 1. Summary of overall word accuracies on Aurora2 mis-matched training/testing

condition(%)
Baseline SS NSS HSS
Baseline 60.06 77.89 78.20 80.59
CMN 71.16 78.56 78.73 82.00
FVN 77.56 79.96 80.03 - 80.70
WVFVN 80.33 82.84 82.47 8341

In Table 1, each abbreviations are defined as follows:

Table 2. Word error rate(%) of ‘HSS+WVFEFVN’

Aurora? Word Error Rate

Training mode Set A Set B Set C QOverall
CMN 9.07 9.80 10.25 9.60
FVN 16.53 15.81 18.25 16.59

WVFVN 12.08 12.08 14.25 13.09
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Table 3. Relative improvements(%) of ‘HSS+WVFVN’

Aurora2 Relative improvements

Training mode Set A Set B Set C Overall
CMN 20.76 31.24 3191 27.18
FVN 51.32 68.23 50.62 57.94

WVEFVN 36.04 49.74 41.27 4256

¢ 'SS’: general power spectral subtraction.

¢ ‘NSS”: nonlinear spectral subtraction.

¢ ‘HSS’: harmonics-hased spectral subtraction.
¢ ‘CMN": cepstral mean normalization.

o ‘FVN': feature vector normalization.

¢ ‘WVEFVN’: weighted variance feature vector normalization.

In Table 1, rows represent the frequency domain approach” and columns denote the
feature domain approach and their combined approaches. Each value is calculated as the
average of word accuracy over 0~20 dB. In Tables 2 and 3, we also report the improved
results of a joint approach (HSS-+WVFVN) involving the proposed algorithms using
Aurora 2 database reporting methodology.

5.3 Discussion

A notable advantage of the proposed scheme is that it does not require an exact SNR
estimate in various noise conditions. If a noise characteristic is stationary and each
magnitude of harmonics is not masked by noise, SS technique itself may work alone and
NSS would further improve the performance. However, real-life conditions are not all that
cooperative. In the case of SS and NSS, due to the fact that the non-stationary
characteristic of noise a posteriori and a biased SNR are estimated inaccurately, there
may be a distortion in the shape of harmonics by subtracting noise magnitude more the in
the harmonics region and less in the sidelobes region. As a result, this distortion will lead
directly to poor performance in the ASR system. However, HSS also has a remedial
capability that would correct the described deficiency. The key to improving the
performance of HSS is how exactly we can find the harmonics corresponding to the
speétrum.

Proposed WVEFVN is compared to the widely used CMN and FVN. FVN technique has
an advantage over other feature domain compensation techniques such as RATZ and VTS
(Moreno, 1996) in that it softens the requirement of prior information about the distribution

of the noisy speech feature. The reason is that it brings both the noisy speech feature and
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clean speech feature to the same normal distribution. In short, it reduces the difference
between training and testing condition. However, there is another mismatch problem due
to the fact that the mean and the variance of noisy speech region are not the same as
those of the non-speech region. Nevertheless, in FVN technique, the same normalization
parameter is applied to both region. For solving this problem we simply apply weighting
constants to the variances of both regions. Consequently, both trajectories become more

similar to each other, compared to the ones derived from FVN.

6. Conclusions

The proposed method has two strategies to solve a mismatch problem. First, HSS is
applied in the frequency domain. HSS is an efficient spectral subtraction scheme focused
to specifically low SNR noisy environments by distinguishing the speech-dominant
segment from the noise-dominant segment in the speech spectrum. Consequently, we let
the shape of the spectral harmonics be preserved more clearly in noisy environments,
which are very critical in speech sound perception. We then improve the overall
performance with FVN. FVN normalizes the distribution of each component of the feature
to the normal distribution so that it compensates biased mean and reduces the variance of
noisy speech. Also, in implementation, the prior noise information is made nonessential in
a simple, but effective method. In addition to the FVN, we multiply the variance by a
weighting factor to compensate for the mismatch of variance between the speech region
and the non-speech region. Representative experiments confirm the superior performance
of the proposed method to conventional methods. Each method can be used in tandem
with conventional methods.
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