DOI QR코드

DOI QR Code

Fabrication of Porous MoSi2 material for Heating Element through Self-propagating High Temperature Synthesis Process

연소합성법에 의한 발열성 다공질 MoSi2계 재료의 제조

  • Song, In-Hyuck (Department of Materials Engineering, Korea Institute of Machinery & Materials) ;
  • Yun, Jung-Yeul (Department of Materials Engineering, Korea Institute of Machinery & Materials) ;
  • Kim, Hai-Doo (Department of Materials Engineering, Korea Institute of Machinery & Materials)
  • 송인혁 (한국기계연구원 재료연구부) ;
  • 윤중열 (한국기계연구원 재료연구부) ;
  • 김해두 (한국기계연구원 재료연구부)
  • Published : 2004.01.01

Abstract

In this study, SHS process has been employed to fabricate porous $MoSi_2$ material with electric-resistive heating capability through the control of pore size. The preform for SHS reaction was consisted of molybdenum powder with different sizes and silicon powder with different contained quantity. The size of the $MoSi_2$ particles thus formed was determined by the generated heat of combustion, not by the size of molybdenum powder. However, the pore size of $MoSi_2$ composite was proportional to the particle size of molybdenum powder. that is the coarser the molybdenum powder used, the larget the formed pore size. Based on these results, the porous $MoSi_2$ composite could be fabricated with a desired pore size. By orienting the porous molybdenum disilicide-based material in the form of pore size gradient, porous materials used for filters with improved dirt-holding capacity can be manufactured.

본 연구에서는 SHS 공정에 의하여 기공의 크기를 조절함으로서 전기저항 발열 특성을 가지는 다공성 $MoSi_2$를 제조하는 공정에 관하여 연구하였다. 결함이 억제된 다공질 재료를 제조하기 위하여 Si 함량 변화 및 예열 공정을 실시하였으며, 성형체 제조에 사용되는 Mo 분말의 크기 변화에 따른 가공 형성 거동에 대하여 연구하였다. 실험 결과 합성된 $MoSi_2$ 입자의 크기는 Mo 입자의 크기와는 관계없이 연소 합성시 발열되는 발열양에 의해 좌우되었으며, 기공의 크기는 Mo 입자의 크기에 따라 결정되었다. 또한 가공 경사 $MoSi_2$ 다공질 재료를 만들기 위하여 150-300${\mu}m$ Mo 분말과 4-5${\mu}m$ Mo 분말을 단계별로 5층으로 혼합하여 합성한 결과 거시적으로 순차적인 기공 크기 분포를 나타내었으며, 이를 통하여 포집 효율등이 우수한 다공성 발열체 재료의 제조가 가능하였다.

Keywords

References

  1. P. La, Q. Xue, and W. Liu, 'Study of Wear Resistant Mo $Si_2$ SiC Composites Fabricated by Self-propagating High Temperature Synthesis Casting,' Intermetallics, 11 [6] 541-50 (2003) https://doi.org/10.1016/S0966-9795(03)00041-4
  2. Z. Yuping, C. N. Xu, and T. Watanabe, 'The Eftects of Carbon addition on the Mechanical Properties of Mo $Si_2$ -TiC Composites,' Ceram. Int., 28 [4] 387-92 (2002) https://doi.org/10.1016/S0272-8842(01)00106-7
  3. C. Gras, D. Vrel, E. Gaffet, and F. Bemard, 'Mechanical Activation Effect on the Self-sustaining Combustion Reaction in the MoSi System,' J. of Alloys and Compounds, 314 [1-2] 240-50 (2001) https://doi.org/10.1016/S0925-8388(00)01221-4
  4. M. A. Alvin, 'Impact of Char and Ash Fines on Porous Ceramic Filter Life,' Fuel Processing Technology, 56 [1-2]143-68 (1998) https://doi.org/10.1016/S0378-3820(97)00088-X
  5. L. Sun and J. Pan, 'Fabrication and Characterization of TiC-Particle-reinforced Mo $Si_2$ ; Composites,' J. Euro. Ceram. Soc., 22 [5] 791-96 (2002) https://doi.org/10.1016/S0955-2219(01)00378-8
  6. T. Dasgupta, A. K. Bhattacharya, and A. M. Umarji, 'Synthesis and Structure of Aluminum Substituted Mo $Si_2$ ,' Solid State Communications. 126 [10] 573-78 (2003) https://doi.org/10.1016/S0038-1098(03)00300-4
  7. H. Zhang and X. Liu, 'Analysis of Milling Energy in Synthesis and Formation Mechanisms of Molybdenum Disilicide by Mechanical Alloying,' Int. J. of Refractory Metals and Hard Mater., 19 [3] 203-08 (2001) https://doi.org/10.1016/S0263-4368(01)00050-6
  8. B. K. Yen, T. Aizawa, and J. Kihara, 'Synthesis and Formation Mechanisms of Molybdenum Silicides by Mechanical Alloying,' Mater. Sci. Eng. A, 220 [1-2] 8-14 (1996) https://doi.org/10.1016/S0921-5093(96)10430-5
  9. S. W. Jo, G. W. Lee, J. T. Moon, and Y. S. Kim, 'On the Formation of Mo $Si_2$ by Self-propagating High-temperature Synthesis,' Acta Mater., 44 [11] 4317-26 (1996) https://doi.org/10.1016/1359-6454(96)00106-1
  10. A. L. Dumont, J. P. Bonnet, T. Chartier, and J. M. F. Ferreira, 'Mo $Si_2$/$Al_2O_3$ FGM : Elaboration by Tape Casting and SHS,' J. Euro. Ceram. Soc., 21 [13] 2353-60 (2001) https://doi.org/10.1016/S0955-2219(01)00198-4
  11. J. J. Moore and H. J. Feng, 'Combustion Synthesis of Advanced Materials: Part I. Reaction Parameters,' Prog. Mater. Sci., 39 243-73 (1995) https://doi.org/10.1016/0079-6425(94)00011-5
  12. D. Muscat and R. A. L. Drew, 'Modeling the Infiltration Kinetics of Molten Aluminum into Porous Titanium Carbide,' Metall & Mater. Trans., 25A 2357 (1994) https://doi.org/10.1007/BF02648856