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A Linear-Time Heuristic Algorithm for
k-Way Network Partitioning

Tae-Young Choe'

ABSTRACT

Network partitioning problem is to partition a network into multiple blocks such that the size of cutset
is minimized while keeping the block sizes balanced. Among these, iterative algorithms are regarded as
simple and efficient which are based on cell move of Fiduccia and Mattheyses algorithm, Sanchis algorithm,
or Kernighan and Lin algorithm. All these algorithms stipulate balanced block size as a constraint that
should be satisfied, which makes a cell movement be inefficient. Park and Park introduced a balancing
coefficient R by which the block size balance is considered as a part of partitioning cost, not as a constraint.
Tlowever, Park and Park’s algorithm has a square time complexity with respect to the number of cells.
In this paper, we proposed Bucket algorithm that has a linear time complexity with respect to the number
of cells, while taking advantage of the balancing coefficient. Reducing time complexity is made possible
by a simple observation that balancing cost does not vary so much when a cell moves. Bucket data
structure is used to maintain partitioning cost efficiently. Experimental results for MCNC test sets show
that cutset size of proposed algorithm is 63.33% ~92.38% of that of Sanchis algorithm while our algorithm
satisfies predefined balancing constraints and acceptable execution time.
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1. Introduction

Network partitioning is a fundamental problem
in the field of design automation. The goal of
network partitioning is to divide the cells of a
network into several subsets subject to size (or
balance} constraints while minimizing the inter-
connections among those subsets. Since the net-
work partitioning problem is known to be NP-
complete, many heuristic algorithms have been
proposed[1-5].

Kernighan and Lin proposed K-L algorithm that
starts with a random 2-way partition and it tries
to reduce cutset size by making small local changes
such as successively exchange a pair of cells
between two blocks[1]. Fiduccia and Mattheyses
proposed 2-way partitioning algorithm called F-M
algorithm. F-M algorithm moves cell one by one
[6). Sanchis algorithm is proposed by Sanchis[2]
and it extends F-M algorithm to allow k-way
partition. These algorithms have two drawbacks:
First, result partitions are largely influenced by
initial partitions. Second, they set allowable

unbalance size =S ™ to allow all cells can move,

where S™ is the largest cell size. As the result,
block size difference becomes too large to be used
in real circuit design. If they restrict {(S™
moderate size, some cells cannot move and result
partitions with larger cutset are generated(7].

Simulated annealing is probabilistic method to
find an optimal solution. Given a randomly gen-
erated partition, it transforms the partition either
to a new partition of lower cost or to another new
partition of higher cost with low probability.
Though this method generates comparatively good
result, it requires much execution time.

Spectral method is mainly applied to graph par-
titioning problem[3,3-10]. Spectral method parti-
tions a given graph using eigenvectors of La~
placian matrix, which represents topology of the

graph. The result partition by Spectral method can

be further improved by iterative methods. It has
an advantage that global information of a graph is
used. A disadvantage is that a given network must
be modified to a graph with some costs in terms
of computation time and accuracy of results. More-
over, if the network includes many nodes of high
degree, the generated graph will be very dense,
which requires large memory and long compu-
tation time for calculating eigenvectors.

Balancing factor is a method to overcome the
problems of F-M family algorithms. Partitioning
algorithms that consider the balancing factor re-
gard an unbalanced state as cost rather than as
unpardonable condition. Ratio—cut algorithm(4] de-
fines ratio—cut as the partitioning cost obtained by
multiplyving two blocks size and dividing it by
cutset size. The more balanced two blocks are or
the smaller cutset is, the lower ratio-cut is. The
goal of ratio—cut algorithm is to get smallest ratio-
cut partition.

Park and Park’s algorithm{11] (P-P algorithm)
is a generalization of ratio—cut algorithm. It can
control the relative importance between cutset cost
and balancing cost by adding balancing coefficient
R to cost function. However, its time complexity
is higher than F-M algorithm because whenever
a cell is moved, balancing cost of all free cells must
be recalculated.

In this paper, we propose an improved algorithm
(Bucket algorithm) which works better than F-M
family algorithms in terms of cutset size and bal-
ancing cost while maintaining reasonable compu-
tation time. Main idea of this paper is to use the
balancing coefficient for control of balancing and
to use bucket structures for execution time re-
duction. The remainder of the paper is organized
as follows; In Chapter 2, we introduce network
partitioning problem. In Chapter 3, we present an
algorithm and its data structure. In Chapter 4, the
experimental results are shown, and lastly we
discuss the conclusion and further research in
Chapter 5.
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2. Definitions

In order to describe the proposed algorithm, it
is required to introduce some definitions and their
explanations. A network is a hyper-graph H = (C,
N), where Cis a set of cells and NV is a set of nets
as shown in Fig. 1. A cell ¢ is an object having
its size. A net nis a set of cells which are connected
by the net. A net has its weight. Without loss of
generality, we assume the weight of every net to
be 1. A pin is a connection point between a cell
and a net.

Notation 1 For a given network H = (C, N),
1. [C): the number of cells.
. INI: the number of nets.
. S(c): the size of a cell c.

o~ W N

. ne = {n | ¢ € n}: the set of nets incident on
a cell c

. Ind: the number of nets incident on a cell c.

. ¢ = {c | ¢ € n}: the set of cells on a net n.

. lcal: the number of cells on a net n.

lnd ™ =max dnd=>».

© 00~ & W

e d ™ =max ,epcy.
10. $™ = max .o5¢).
11. w= ;Cs(c).

For a given network H, we define the size of

Fig. 1. An example of a 2-way network partition.

the network m as the total number of pins in the

network. Thus,
m= gcln 4= n;;vlcnl.

A k-way partition of a network is described by
the k blocks (A1, A», -+, Ax) where Ai N A= o
for i » jand UJA ;= C. Aiis called i~th block of
the partition. Given a k-way partition, a net is
called uncut if all cells in the net reside in one block
and cut otherwise. The cutset is a set of cut nets
and its size (i.e., the number of cuts in the cutset)

is denoted by N and defined as follows:
R =|{#A Nc,#@andA Nc,+ @ fori . (1)

Fig. 1 shows an example of a 2-way partition
of a circuit: the partition P = (A1, A2) where A;
= {a, o, ¢3, ¢4, &, s} and Az = {er, ¢8, o, ci0}. Note
that the cutset includes two nets: (¢4, c8) and (c,
c, o), e, N = 2.

The k-way network partitioning problem is to
find a k-way partition (k > 2) such that the cutset
size is minimized and each block is constrained to
have a certain size. For a given network H, assume
a k-way partition P. The partitioning cost of P is
defined to be a function of two components: a
cutset cost and a balancing cost. The cutset cost
represents the cutset size R and the balancing
cost represents how much P is balanced. If we
denote the partitioning cost, cutset cost, and
balancing cost by Crar(P), Ccur(P), and Cgar(P),
respectively, then Cear(P) = flCcut(P), CaaLlP)).
In the form of formal notations, the partitioning
problem is to find partition Pmin such that

C pap( P i) = min peg C pap(P),

where % is the set of all possible k-way
partitions of a network.

There are many ways to evaluate how much a
partition is balancedi4,8,11]. A partition P is said
to be perfectly-balanced if the total sum of the size
differences of all disjoint pairs of blocks is
minimum. That is, the partition P is perfectly-
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balanced if

N @P JS(AD = S(A )=
min g, F . IS(AT) = S(ATD.

3. Proposed Algorithm

For a given network H, assume a k-way
partition P = (A, Az, -+, Ax). The partitioning cost
Cpagr(P) of P is defined as [11}:

Cpar(P)=Ccpyr{PY+ R Cpar(P), (2)

where cutset cost Ccur(P) is defined as R, and

balancing cost CpaL(P) is defined as

Caa(P= 21 IS(A)—S(A). (3)

Note that CsaL(P) in Equation (3) is different
from that in [11]. The gain of cell ¢ in block A

to block A;, denoted as 7y A,( ¢), represents the

amount of partitioning cost to be reduced after ¢
1s moved from A; to A;. Let P’ = (A, A2, -, A"y,
-+, A'j, =+, Ar) be the partition after ¢ is moved
from A; to A;. Then,

YA,(C)'—:CPAR(P)—CPAR(P). (4)

The gain 74 (¢) consists of two components:
cutset gain x 4 (c) and balancing gain 74 (¢).

These components are defined as follows:

CCUT(P)—CCUT(P)- (5)

KA,(C)=

7TA,(C)=CBAL(P)—CBAL(P). (6)

By substituting equation (2) to equation (4), and
substituting equation (5) and (6), we have

7al)=x 2O+ R: ma(0). (7
Cutset gain x 4 (¢) is obtained by setting gain

level to 1 in[2]). The maximum cutset gain x» ™

is {nd ™ or p.

Balancing gain 74 (c¢) is obtained by

z4c) = (IS(A,)—S(AQI-!S(A D= S(A )+ S
(|S(A1)— S(A DI —1S(A )~ S(A ) — S
+|S(A A= S(A NI —1S(A )= S(A ) —25(a)D).

8)
Maximum balancing gain is S™(2k—2) in
case that a cell with size S™" is in A, target
block is A;, and A;+S™ <A<A;,—S™, for all
blocks A; (/% i,7). Thus range of partitioning gain
covers from —p—R-S™(2k—2) to p+R:
ST (2%k—2)
explicit quality of result partition, the size of bucket
[p+R-S™ - (2k—2)1 +1
Fig. 2 shows the main step of proposed network
partitioning algorithm. Procedure DO_PASS it-
eratively improves a given partition. DO_PASS

. Since the cutset cost is the most

is set as 2-

Procedure PARTITION_ NETWORK(H, k, R)
begin
// input: a network H = (C, N), the number of blocks b,
// and balancing coefficient R
// output: k-way partition P = (A1, Az, -, Ax
read network description;
construct an initial partition P;
repeat

DO_PASS(P),
until there is no more improvement in cutset size;
end

(a)

Procedure DO_PASS(P)

begin

1 Free all cells;

2 Calculate initial cutset gain of all cells;

3 Calculate initial balancing gain of all cells;

4 Calculate initial partitioning gain of all cells;

5 while there exist free cells do

6 Select a free cell ¢ which has maximum partitioning gain.

7  Move and lock the cell ¢;

8 Adjust cutset gain of adjacet free cells to ¢

9 Recalculate balancing gain of all free cells;

0 Recalculate partitioning gain of all free cells;
endwhile

11 return the best partition P’ among produced partitions;

end.

fms

(b)

Fig. 2. Proposed network partitioning algorithm.
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first frees all cells and calculates gain of each cells.
Then it repeatedly finds free cell with max gain,
moves it, locks it, and recalculates gain of all the
remaining free cells. If cell ¢ moves from block A;
to block Aj, cutset gain of free cells which are
neighbour of ¢ is changed, and balancing gains of
every free cells are changed.

In procedure DO_PASS, time complexity of line
1,2,and4is O, O(km), and O(H(), respec-
tively. Since the time complexity of equation (8)
is O(k), time complexity of line 3 is O(£%Q).
While statement in line 5 runs [Cl| times because
all cells are moved. Time complexity of statements
in line 6 and 7 is O(|(), since max gain cell is
already selected in line 4 and 10. Time complexity
of line 8 is O(mk), which is same as Sanchis
algorithm. Statement in line 9 uses equation (8) for
each free cell and change of a block size influence
to balancing gains of all free cells. Thus it requires
O(k4A? step in procedure DO_PASS. The
number of steps in line 10 is O(HC%). Thus time
complexity of procedure DO_PASS is (k3 ?).
Calculation of balancing gain is dominant part of
proposed algorithm, and it makes proposed algo-
rithm have higher time complexity than F-M or

Sanchis algorithms. Proposed algorithm need not
data structure like bucket since all cells are

scanned each time.

4. Reduction of balancing gain calcu-
lation time

The main time complexity of our algorithm
comes from the fact that balancing gain is re-
calculated after each cell is moved. We expect that
there is little performance degradation even if a
partitioning algorithm computes balancing gain
approximately considering two reasons: First, if
we use small balancing coefficient R like 0.1, bal-
ancing gain is less important than cutset gain, and
small change of balancing gain can be negligible.
Second, difference of balancing gain between cells
in a block is little modified. In 2-way partition
P=(A; A,), when a cell ¢ in block A; moved

to Aj; balancing gain of other cell d in block A;
changes to
Tald)=1S(A)—S(AN—IS(A)—S(A ;) —25().

U;ing this equation, relation between balancing
gain and cell size is drawn in Fig. 3, where
S(A )= S(A ) +2S for some size S > 0. Consider

balancing gain when a cell ¢ is moved to Ai (§"=S+S(c))

balancing gain

25"

25
25"}t

N\ .
o cell size |

balancing gain

cell si

—287 7
-2

balancing gain when a cell d is moved out of Ai (S'=5-S(d))

(a)

(b)

Fig. 3. Relation between cell size and balancing gain. In 2-way partition P = (A, A), when S(A) =
S(A) + 28, (a) balancing gain ny for each cell in block S(A), (b) balancing gain na for

each cell in block S(A).
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the cells in block A,. If a cell ¢ with size S(¢) in
black A; movesto A; then S(A )= S(A)+2S",
and balancing gains of cells change to upper
dashed line. That is, balancing gains of cells with
larger size than S increase. If cell d moves from
block A; to A;, then S(A))=S(A)+2S, and
balancing gains of cells change to lower dotted line.
That is, balancing gains of cells with larger size

than S decrease. In case of cells in block A;

balancing gains of cells does not changed whether
a cell move to A; or A, From this fact, we can
see that relative changes of balancing gain
between cells are small when small cell moves.

Fig. 4 shows DO_PASS’ procedure which re-
duces balancing gain calculation time. Parameter

T . is the number of balancing gain calculation
in DO_PASS’. S, is value which divides sum of
cell size W by T, If the sum of a moved cell
size S .. exceeds S, Bucket algorithm calcu-

lates balancing gain of all free cells. Consider a set
of cell movements from a source block to a target
block. All the cell movements in the set has the
same balancing gain changes after a cell move-
ment. That tells that scanning all free cells is
redundant when a cell with the max gain is se-
lected. DO_PASS’ selects one among represen—
tative cells that are cells with the maximum
partitioning gain in a source block and target block
pairs. Partitioning gains of the representative cells
not of all free cells are calculated after a cell is
moved. Thus gain of k(k-1) cells are computed
after a cell movement. Procedure select_max_gain
in Fig. 4 (b) calculates exact gains of represen-
tative cells and selects a cell with the largest gain
among the representative cells. However, it is need
to adjust gain of all cells periodically in order to
prevent distortion of balancing gain. After S,

amount of cells are moved, gains of all free cells
are re-computed.

In case of 2-way partition, time complexity of
line 9 in DO_PASS’ shown in Fig. 4 (a) is O(m)

Procedure DO_PASS
begin
1 Srer < w/ Tty
2 Sauce < 0;
3 Calculate initial cutset gain of all cells;
4 Calculate initial balancing gain of all cells;
5 Calculate initial partitioning gain of all cells;
6 while there are free cells do
7 ¢« Select_max_gain_cell);
8 Move and lock ¢
9 Recalculate cutset gain of free cells which adjacent to ¢
10 Sac < Sace = SIO)
11 if Sic > Sk then
12 Recalculate the balancing gains of all free cells;
13 Recalculate the partitioning gains of all free cells;
14 Sacc < 0
endif

endwhile
15 return the best partition among produced |C};
end.

(a)

Procedure select max_gain
begin
max_gain < min_value;
for each source block Ar do
for each target block A; do
Cell ¢; < max_gain cell in bucket [A;, A
Calculate partitioning gain of ¢;
if partitioning gain of ¢; > max_gain then
max_cell < ¢
source_block < As
target_block < Ag
endif
endfor
endfor
return max_cell; source_block, target_block;
end.
(b)

Fig. 4. (a) DO_PASS’ of improved algorithm
(b) select_max_gain procedure used by
DO _PASS’.

during a DO_PASS’. Time complexity of line 12
and 13 in DO_PASS’ is (T ,40). Line 7, 8, and
91in DO_PASS’ has constant time complexity. Line
3, 4, and 5 has O(IC)) time complexity. Thus time
complexity of DO_PASS’ is (AT ,) in 2-way
partition.

In case of k-way partition, since max gain cell

is selected among k(k-1) buckets, Select_max_
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gain_cell() has O(k% () time complexity. After a
cell is moved, cutset gains of adjacent cells for each
block are calculated. Thus time complexity of line
9in DO_PASS’is O(km). Line 12 and line 13 takes
O(kT ,,4Q) time. Thus time complexity of DO_
PASS’ is O(EAQ+km+(k—1)T Q) in k-way
partition.

Choe proposed balancing coefficient R*> p/(2 - S)
which guarantees perfectly- balanced partition in
same cell size S [7]. R =p/(2*|S,,—d) is
proposed by Choe, when cell sizes are different, the
average i S, and standard deviation is 0. Since

the balancing coefficient influences the range of
gains and the size of bucket structure is determined
by the range of gains, large balancing coefficient
R causes large bucket size and increases time
complexity. Though the balancing coefficient R’ is
not so large, we propose lower R” to get more
small cutset. Sparse networks have more freedom
than dense network, and partitioning algorithms
hardly get minimum cutset in sparse networks.
Thus we consider density of network as parameter
of balancing coefficient. We define density d’ of

network as
d=-".
|
In graph, d’ is equal to Z—IZF We propose R’
as
. [nd ™
R'=d (S

Table 1. circuits used in the experiment

5. Experimental Results

In order to evaluate the performance of our
proposed algorithm, we used circuits obtained from
Microelectronic Center of North Carolina (MCNC)
benchmarks. Table 1 shows the properties of each
circuit. Sanchis algorithm is considered for com-—
parison. These are programmed in C, and are
executed in Sparc 20. Each algorithms are executed
50 times.

Parameter T, highly influences the execution
time of Bucket algorithm. Various values of T,
are tested in order to yield suitable partition quality
and computation time. Fortunately, Fig. 5 shows
that cutset size and balance of resulting partitions
are not largely influenced by T . Circuits PrimSCl1,
PrimGA2, Test05 in Table 1 are tested in the case
of 2-way and 12-way partitions and balancing
coefficient R and R”. In Fig. 5, cutset size de-
creases as T ,yincrease only in the case of 2-way
partition of PrimGA2 and Test05 with £’. More-
over, balancing cost is almost independent of T ..
The reason that cutset size and balance are little
influenced by T,y is that partitioning gain is
calculated prior to selecting max gain cell. We set

T ,; to 10 for remaining experiments. Though
Sanchis algorithm can move all cells by setting
allowable unbalance size T as S™ in 2-way
partition, T can make size difference between
blocks too large in real circuit. So we restricted
the block size to 2:3, that is, proportion of the
smallest block and the largest block is 2:3. Thus

circuits No. cell No. net No. pin std.deY of max degree max size
|Cl NI D cell size of cell of cell
PrimSC1 833 1266 3303 1.55 9 5.63
PrimGA2 3014 3817 12014 1.83 9 10.36
Test04 1515 2189 7324 16.13 103 596.70
Test05 2595 3488 12150 19.95 100 970.80
Test06 1752 2048 7696 2.75 8 19.17
Test08 3804 4266 14119 3.55 13 35.80
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cutset size for each the time of balance gain caiculation
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Fig. 5. Cutset for each balancing gain calculation time T, in case of Bucket algorithm: (a) cutset size
for 2-way partition (b) cutset size for 12-way partition (c) size difference for 2-way partition

(d) size difference for 12-way partition.

some cells are not considered as moving candidate
during DO_FPASS because of size constraint, even
if they are free. Gain level in Sanchis algorithm

min cutset size for No.block in PrimSC1

350 T T T T T
bucket —+—
300 % Sanchis. ~%-- -

250
200 |-
150 [
100

50 * Il 1 1 s I
2 4 6 8 10 12 14
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Fig. 6. Performance comparison between Sanchis algorithm, and Bucket algorithm in PrimSC1 (a)cutset

size, (b)sum of block size difference.
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min cutset size for No.block in PimGA2
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size, (b) sum of block size difference.

min cutset size for No.block in Test04
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Performance comparison between Sanchis algorithm, and Bucket algorithm in PrimGA2 (a) cutset
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Fig. 8. Performance comparison between Sanchis algorithm, and Bucket algorithm in Test04 (a) cutset
size (b) sum of block size difference.
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size difference for No.block in Testo5
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Fig. 9. Performance comparison between Sanchis’ algorithm, and Bucket algorithm in Test05 (a) cutset
size, (b) sum of block size difference.

the number of block changes. In 2-way parti-
tioning, Sanchis algorithm has the smallest cutset,
while size difference between blocks is the largest.

In 12-way partitioning, Bucket algorithm gen-
erates the smallest cutset partition. In experiment,

since deviation of circuit size is low while max
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min cutset size for No.block in Test06
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Fig. 11. Performance comparison between Sanchis algorithm, and Bucket algorithm in Test08 (a) cutset size,

(b) sum of block size difference.

degree of cell are large, K’ is larger than 1.

As we can see from Table 1, balancing con-
straint cannot be satisfied when there is a cell with
size of 1/3, 1/4, 1/8 of circuit size. In Test04, and
Test05, as the number of block k increases, size
difference between blocks increases sharply.

Sanchis algorithm increases cutset size as well
as size difference in case of Test04, and Test05.
Since it gives higher priority to balance constraint,
it cannot decrease cutset size when balance con-

straint is not satisfied. On the other hand, Bucket
algorithm makes smaller cutset. It seems a pro-
perty of algorithm like bucket which consider only
cost function in partitioning.

Table 2 shows total execution times of two
partitioning algorithm along the number of blocks.
Our Bucket algorithm consumes more execution
time than Sanchis algorithm does, because bal-
ancing gain computation is included. The execution
time of Bucket algorithm increases more quickly

Table 2. Total execution times (second) of two partitioning algorithms: Ratio is the percentage of
execution time of Bucket algorithm over that of Sanchis algorithm.

Algorithm 2-way 3-way 4-way 8-way 12-way
Sanchis 10.23 134 18.94 55.58 100.68
Bucket 13.3 27.8 429 142.3 3417

ratio 130.01% 207.46% 226.50% 256.03% 339.39%
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than that of Sanchis algorithm. Since each cell has
more gains and chances in partitions with more
blocks, the number of DO_PASS calls increases
as the number of the block increases.

6. Conclusion

In this paper, we proposed a linear-time heu-
ristic algorithm to solve network partitioning prob-
lem. Proposed Bucket algorithm generates per—
fectly balanced partition which cannot be guar—
anteed by the F-M family algorithms. Average
cutset size of proposed algorithm is 63.33~92.38%
of Sanchis algorithm.

In proposed algorithm, there are some pa-
rameters which user must determine:

» balancing coefficient I2: For large R, more
balanced and larger cutset sized partition is
generated. For small R, less balanced and smaller
cutset sized partition is generated.

» balancing gain calculation frequency: As more
frequently balanced gain is calculated, more
precisely max gain cell is selected.

We propose a balancing coefficient K based on
statistical properties of given network. The
balancing gain caleulation frequency T is set as
10 according to experiments.

We will examine the detail properties of those
parameters and determine the relations with result
partition as future works.
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