요구곡선 산정방법에 따른 능력스펙트럼법의 유효성 평가 및 비교

Effect of Demand Spectrums on the Accuracy of Capacity Spectrum Method

김홍진*, 민경원**, 박민규***

국문요약

주요어: 능력스펙트럼법, 요구곡선, 유사계수도응답, 점차적응답응답, 응답감쇠계수

ABSTRACT

While transforming the inelastic system into the equivalent elastic one gives an advantage of simplier analysis, the actual inelastic behavior of the system is hardly modeled in the capacity spectrum method (CSM). Therefore, the accuracy of CSM depends on the precise estimation of equivalent period and damping ratio as well as the modification of the elastic response spectrum and the corresponding demand spectrum. In this paper, the effect of demand spectrums on the accuracy of CSM is evaluated. First, the response reduction factors provided in ATC-40 and Euro Code are evaluated. Numerical analysis results indicated that the acceleration responses obtained using the factor of Euro Code are closer to the actual response than those obtained using the factors of ATC-40. Next, the accuracy of CSM is evaluated constructing the demand spectrum using the absolute acceleration responses and pseudo acceleration responses. The results obtained using the absolute acceleration responses were found to be generally larger than those obtained using the pseudo ones. Since CSM often underestimates the response, the use of absolute acceleration response gives the response relatively closer to the exact ones. However, the difference becomes negligible as the hardening ratio and the yield strength ratio become larger.

Key words: capacity spectrum method, demand spectrum, pseudo acceleration response, absolute acceleration response, response reduction factor

1. 서 론

ATC-40과 FEMA-273에서 제안한 능력스펙트럼법은 1970년대에 처음 소개되었으며, 건축물의 내진 성능을 간단히 평가하기 위한 방법이다. 이 방법은 탄성 응답스펙트럼에 의해 구해진 요구곡선과 구조물의 흔들림에 저항하는 능력곡선을 이용하는 방법으로, 두 곡선의 교차점을 구하여 계량적인 구조물의 내진성능을 평가한다. 여기서 구조물의 비선형 저항의 영향은 등가주기와 등가감쇠비에 의하여 탄성응답스펙트럼을 수정함으로써 나타난다. 즉, 지면에 의한 구조물의 탄성 비선행응답을 구하기 위하여 등가주기와 등가감쇠비를 갖는 탄성 구조물의 변위를 구함으로써 비단상 시스템의 동적 해석을 생략할 수 있다.

이처럼 비선형시스템을 등가의 선형시스템으로 근사하는 것은 해석이 간단하다는 매우 중요한 장점을 제공하지만 구조물의 실제 비선형행동을 정확하게 모델링하지 못해 때문에 능력스펙트럼법의 정확도는 첫째로 정확한 등가주기와 등가감쇠비 산정에 영향을 받는다. 일반적으로 비선형운동을 하는 시스템은 강성저하와 안정성에 의한 감쇠효과의 증가를 보이며, 이는 등가의 선형시스템에서 각각 등가주기와 등가감쇠 비로 표현된다. 이러한 등가주기와 등가감쇠비를 정확히 산정하기 위해 많은 연구가 수행되었다. Miranda(6)는 264개의 지진에 대한 비선형 동적해석을 통해 ATC-40, GIulkan, Kowalsky, 그리고 Iwan 등에 의해 추정된 등가주기와 등가감쇠비의 정확성을 비교 평가하였다. 우선, 각각의 주기의 시스템에 대해 시스템의 안정성을 가정한 후, 추정된 해석에 따른 등가주기와 등가감쇠비를 갖는 등가의 선형시스템의 최대반응을 구하였다. 그리고, 이어진 최대반응을 비선형 동적해석에서 구해

---

* RIST 산학연연구, 공학박사(대표저자: hongkimk@mcrirc.net)
** 경희대-단국대, 건축학부 교수, 공학박사
*** 단국대학교 건축대학 석사과정

본 논문의 주요인은 2004년 6월 1일부터 2004년 12월 31일까지의 논문이자, 2004년 6월 1일부터 2004년 12월 31일까지의 논문이다.
긴 쇄대 변위와 비교하는 방법을 통해 정확성을 평가하였다. 김종진 등\(^{18}\)는 상기 기술한 방법들을 이용하여 등기주كتابة시간과 가연성바닥이 산정한 후, ATC-40에서 제시한 점에 대한 가연성방식의 최대변위를 구하고 이를 비선형방식을 통해 얻어진 최대 변위값과 비교함으로써 퍼플렉스트랙토방법의 유용성을 평가하였다.

둘째로, 퍼플렉스트랙토방법의 정확도는 구체적인 담기경색에 따라 선정된 응답스펙트럼이 목표범위의 수치와 그에 따른 요구조건과의 산정해 범위를 받아야 한다. 구조물의 요구조건은 거주도-변위의 관계로 나타나며 이는 ATC-40와 FEMA-273에서는 담기경색을 갖는 구조물의 가속도와 변위의 스트립 함수를 구하기 위하여 두 개의 응답 감소 계수(Response reduction factors)를 사용한다. 이 때 변위와 가속도 응답값의 관계는 구조물의 응답을 요소응답이라고 하는 계수에 구현한다. 즉, 임의의 주기 구조물의 최대 가속도 응답은 최대 변위 응답 값에 고유주기변수의 값을 포함한 계수 구현한다. 이는 구조물의 고유주기변수를 갖는 초기가속도를 하는 경우 최대 변위가 발생할 때 구조물의 최대 전단력이 발생한다는 가정에 의한다. 이를 통해, 구현하는 가속도 응답은 원래 궤도가 응답과 구분하기 위하여 유사가속도 응답이라 한다.

감쇠비가 0일 때 점들 가속도 응답과 유사가속도 응답은 일치하며, 10%인 작은 감쇠비에서는 두 값이 거의 유사해 보이는 값을 허용한다. 하지만 큰 감쇠비에서는 많은 값이 현저히 다르다. 따라서 본 감쇠경색가 추가되는 등 구조물의 감쇠가 큰 경우, 전단력은 스프링과 감쇠기를 이용한 형태로 계산되어야 하므로, 유사가속도 응답은 최대 전단력을 계산하기 위한 점들 가속도를 대신할 수 없다. 다만, 실제 지진 하중에서는 구조물이 비탄성 거동을 할 경우 초기가속도 함수는 기점을 변숫값길 수 없음을 예외로, 이에 Lin 등\(^{26}\)은 유사가속도 응답 대신 점들 가속도 응답을 사용하여 요구조건을 산정함으로써 퍼플렉스트랙토법을 개선하고자 하였다.

ATC-40와 FEMA-273에서 사용되는 감쇠효과의 주기에 의한 응답의 감소는 Newmark와 Hall\(^{19}\)이 제안한 감소 계수에 기초하여 구현한다. 이 때 응답 감소 계수로 가속도 구간과 동속 구간으로 구분하여 계산하기 때문에 두 구간의 경계에서 감쇠비가 커질수록 강한 비민속성을 가진다. 또한 주기가 0초에 가까우며 속도 실제 구조물은 감쇠가동을 함으로써 가속도 응답은 감쇠비의 증가에 따라 감소가속도로 변화되어 감쇠계수를 이용한 경우에는 이러한 감쇠가동을 표현하기 용이하게 단추기 구조물의 경우 퍼플렉스트랙토법의 오차가 크게 나타난다.

본 논문에서는 요구조건의 산정에 따른 응답스펙트럼의 유용성을 평가하고 정확성을 분석하였다. 이를 위해 ATC-40과 FEMA-273에서 사용되고 있는 Newmark와 Hall이 제안한 감소 계수와 Euro Code에서 제안한 감소 계수 등의 유용성을 평가하였다. 그리고 유사가속도 응답을 이용한 방법과 점들 가속도 응답을 이용한 방법을 이용하여 요구조건을 산정하는 퍼플렉스트랙토방법의 정확성을 검증해 보았다. 수치해석은 구조물의 주기 및 변모성, 요구되는 탄성가드에 대한 항복량도비 조건, 변형 탄성가드에 대한 항복 후 강성비가 다른 여러 단계유도 구조물에 대하여 수행하였다. 지진가중으로는 단일 지진의 경우에서는 El Centro 1940 지진데이터를 이용하였고, 여러 지진의 평균 응답에 대한 항복을 살펴보기 위하여 ATC-40에서 제안하는 진동으로부터 10km수지의 지역에서 추정한 10개의 지진자료를 사용하였다. 각 지진은 두 개의 점들에 가지, 모두 20개의 지진가중도를 사용하여 평균용답을 계산하였다. 구조물의 정확한 내진 성능을 구하기 위해서는 르필록션의 정확한 산정 현장을 미치는 논문에서 이에 대한 논의는 생략한다.

2. 요구조건 (Demand Spectrum)

2.1. 요구조건의 산정

요구조건은 일반적으로 그림 (a)와 같이 주기에 대한 유사가속도 응답, 유사속도 응답, 또는 변위 응답의 관계로 표현되는 것을 변위와 유사가속도 응답의 관계로 하는 그래프에 표현한다. 그 변위는 그림 (b)와 같이 유사가속도 응답은 수직축에 표기하고, 변위 응답은 수평축에 표기하는 ADRS (Accelaration Displacement Response Spectrum)의 형식으로 표현한다. 이 변위에는 식 (1)의 관계를 이용한다.

$$ S_a = \frac{1}{4\pi} \cdot PS_a \quad (1) $$

여기에 $S_a$와 $PS_a$는 각각 변위 응답스펙트럼 값과 유사가속도 응답스펙트럼 값을 나타내며, $T$는 구조물의 주기이다. 이는 식 (2)에 의해 표현되는 유사가속도 응답과 변위 응답의 관계에서 유도되었다.

$$ PS_a = \omega^2 S_a \quad (2) $$

여기에 $\omega = 2\pi/T$는 고유주기변수이다. 그림 (b)의 요구조건에서 주기와 $T_1$과 $T_2$로 표현한 방식의 방향이 된다.

2.2. 최대 전단력

절점이 $m$, 감쇠가 $c$, 강성이 $A$인 단차유도 구조물로 모델링 되는 동등적인 구조물들은 다음과 같은 운동 방정식의
어야 진진동성의 영향을 받는다.

\[ m\ddot{x}(t) + \dot{c}(t) + kx(t) = 0 \]  
\( (3) \)

여기서 \( \ddot{x}(t) \)는 절대가속도로 \( \dot{x}(t) + \dot{x}(t) \)와 일치한다. 그리고 \( \dot{x}(t), \ddot{x}(t) \) 그리고 \( \ddot{x}(t) \)는 각각 상대 변위, 상대 속도, 상대 가속도 그리고 절대 가속도이다. 식 (3)에 의한 운도 방정식에서의 변위와 절대가속도 응답스펙트럼은 Duhamel 적분 등을 사용하여 다음과 같이 구할 수 있다.

\[ S_d = \left| \ddot{x}(\theta) \right|_{\text{max}} = -\frac{1}{\sqrt{1 - \xi^2}} S(\theta) \]  
\( (4) \)

\[ S_s = \left| \dot{x}(t) \right|_{\text{max}} = \omega^2(1 - 2\xi^2)\ddot{x}(t) + 2\xi\dot{c}(t) \]  
\( (5) \)

여기서,

\[ S(t) = \int_0^T \dot{x}(\tau)e^{-u(t-\tau)}\sin\omega(t-\tau)d\tau \]  
\( (6) \)

\[ C(t) = \int_0^T \dot{x}(\tau)e^{-u(t-\tau)}\cos\omega(t-\tau)d\tau \]  
\( (7) \)

이와 \( \omega_d = \omega\sqrt{1 - \xi^2} \)는 감쇠비, 그리고 \( S_s \)는 절대가속도이다. 식 (3)의 운도방정식에서의 식의 두 조각을 각각 상대 변위의 상대가속도로 생각함에 따라 \( V \)는 일반적으로 감쇠비가 작은 경우 식 (8)과 같이 스프링의 대응력으로 생각한다.\(^{[6]} \)

\[ V = k|\dot{x}(t)| = kS_s = m\ddot{x}S_s = mPS \]  
\( (8) \)

하지만 부가 감쇠장치가 추가되는 등 주요모의 감쇠가 큰 경우, 전단력은 위와 달리 스프링과 감쇠기의 합으로 계산되어진다. 그러므로 전단력을 구하는 식은 다음과 같다.\(^{[6]} \)

\[ V = \left| k\ddot{x}(t) + \dot{c}\dot{x}(t) \right|_{\text{max}} = m|\ddot{x}(t)|_{\text{max}} = mS_s \]  
\( (9) \)

여기서, \( \ddot{x} \)는 구조물 본체의 감쇠와 추가된 감쇠의 합이다. 이 경우, 최대 전단력은 절대 유사가속도인 \( PS \)을 곱한 것이 아니라 최대 절대가속도인 \( S_s \)을 곱한 것이다.

감쇠비에 따른 \( PS_s \)와 \( S_s \)의 평균값을 20개 지진에 대하여 구하여 그림 2에 나타내었다. 사용된 20개의 지진가속도는 ATC-40에서 제안하는 진동으로부터 10km이상의 지역에서 측정한 10개의 지진가속도를 두 개씩의 수평성분이며, 주로 진동 응답스펙트럼을 일치하도록 FEMA-273에서 제시하는 적분을 사용하여 크기를 조정하여 사용하였다.\(^{[6]} \) 목 표 응답스펙트럼은 \( S_s \)에 한정된 허당한 지진가속도 \( C_s = 0.4 \) \( C_s = 0.6 \)를 사용하여 구하였다. 그리고에서 감쇠비가 0일 때, \( PS \)와 \( S_s \)는 일치하며, 10%이하인 작은 감쇠비에서는 두 값이 거의 유사함을 알 수 있다. 하지만 큰 감쇠비에서는 \( S_s \)와 \( S \)가 차이가 있으며, \( PS \)는 최대 전단력을 계산하기 위한 절대가속도를 대신할 수 없음을 알 수 있다.

\[
\begin{array}{c}
\includegraphics[width=0.5\textwidth]{graph.png}
\end{array}
\]

그림 2 감쇠비에 따른 20개 지진을 이용한 평균 유사가속도 응답과 절대가속도 응답의 비율

\[ 2.3 \text{ 최대 절대가속도 응답과 유사가속도 응답의 관계} \]

전술한 바와 같이, 그림 1에 보여지는 스펙트럼의 가속도는 최대 절대가속도 응답이 아닌 유사가속도 응답인가, 이는 조화가동을 하는 구조물일 경우 최대 변위가 발생할 때의 가속도 응답을 의미한다. 최대 절대가속도 응답과 유사가속도 응답 사이의 대략적인 관계는 최대 응답 구간안단 단차유도시스템에 고유주파수 \( \omega \)의 조화하중을 받는다고 가정함으로써 얻을 수 있다. 그림 3에 조화가동을 하는 구조물의 변위와 전단력의 관계를 나타내었다. 그림에서 최대 절대가속도 응답은 최대 변위 응답보다 작은 변위 응답이 발생하는 시간에 일어난다는 것을 알 수 있으며, 둘 사이의 관계는 다음과 같이 나타낼 수 있다.\(^{[6]} \)

\[
\text{Base Shear Mass}
\]

\[ S_s = (f_1 + 2f_2) PS \]  
\( (10) \)

여기서,
\[ f_1 = \cos(\tan^{-1}(25)), \quad f_2 = \sin(\tan^{-1}(25)) \] (11)

이제, \( f_1 \)와 \( f_2 \) 요소는 설계를 위해 부재계를 얻기 위한 유용한 조합요소를 나타낸다. 즉, 최대 가속도에서의 변위 응답은 대략적으로 최대 변위 응답의 \( f_1 \) 배한 것과 같다. 그리고, 최대 절대속도가 일어나는 순간의 부재계는 최대 중간변위가 일어나는 순간의 형에 \( f_1 \) 배 한 것과 최대 중간변위에 주파수 \( \omega \)를 곱한 것과 같은 역계속도가 일어나는 순간의 형에 \( f_2 \) 배 한 것의 선형화함으로 얻을 수 있다. 식 (10)은 아래 식 (12)과 같이 단순화시킬 수 있다.

\[ S_\omega = \sqrt{1 + 4f^2} P_s \] (12)

단, 이 근사관계식은 선형 탄성기동과 점성기동에 대해서만 유효하다.

3. 응답 감소 계수 (Response reduction factor)

3.1 ATC-40과 FEMA-273

ATC-40와 FEMA-273에서는 Newmark와 Hall이 제안한 감쇠비와 스펙트럼응답의 관계에 기초하여, 산정된 동가감쇠 비에 대해 가속도 구간과 속도 구간으로 구분하여 요구곡선을 수정할 수 있는 응답 감소 계수를 사용한다. ATC-40에서 주어진 동가감쇠비에 따른 응답 감소 계수의 산정식은 다음과 같다.

\[ SR_A = \frac{3.21 - 0.68 \ln(\xi_{\text{cr}})}{2.12}, \quad T \leq T_o \] (13)

\[ SR_T = \frac{2.31 - 0.44 \ln(\xi_{\text{cr}})}{1.65}, \quad T > T_o \] (14)

여기서 \( \xi_{\text{cr}} \)는 부드러움에 표현되는 구조물의 동가감쇠비, 그리고 \( SR_A \)와 \( SR_T \)는 각각 가속도 구간의 응답 감소 계수와 속도 구간의 응답 감소 계수이다. 식 (13)과 (14)에서 \( T_o \)는 가속도 구간과 속도 구간을 나누는 주기로 아래와 같은 식에 의하여 구해진다.

\[ T_o = 0.2 T_s \] (15)

\[ T_o = \frac{C_s}{2.5C_o} \] (16)

FEMA-273에서 주어진 감소 계수 \( B \)와 \( B_1 \)은 각각 \( SR_A \)와 \( SR_T \)의 예측과 같다. 구체적인 감소 계수와 의한 요구곡선의 수정은 그림 4와 같이 5% 감쇠비 요구곡선에 구간별로 각각의 감소 계수를 곱하여 이루어진다.

3.2 Euro Code

Euro Code에서는 비록 농력스펙트럼법을 위하여 제시된

![그림 5: 감쇠비별 20개 지진의 평균 유사가속도 응답](image5)

![그림 6: 감쇠비별 20개 지진의 평균 유사가속도 응답을 이용한 요구곡선](image6)
그림 5는 앞서 사용된 20개 지진에 대한 평균 가속도 응답을 감쇠비가 각각 10%, 20%, 그리고 30%인 경우에 대하여 나타내었다. 그림에서 각 20개 지진의 감쇠비별 평균 유사가로도 나타내며, 점선은 ATC-40과 FEMA-273에서 추정한 응답 감소 계수와 Euro Code에서 추정한 감소 계수를 이용하여 5% 감쇠비의 경우 구조물에 각각의 감소 계수를 곱하여 구한 가속도 응답을 나타내었다. ATC-40과 FEMA-273에서 추정한 응답 감소 계수를 이용하여 구한 가속도 응답을 구하기 위한 

\[ T_s = \sqrt{\frac{\nu T}{2 + \nu}} \]  

(17)  

년 4월 5일에 서류 관리 부서에 의해 감쇠비에 따른 5% 감쇠비의 가속도 응답을 측정할 때에 요구되게 요소의 거주 계수에 의하 여 응답을 수정한다.  

\[ n = \sqrt{\frac{\nu T}{2 + \nu}} \]  

4. 요구효산의 산정에 따른 능력석정법의 유소성 평가

4.1 단일 지진  

요구효산의 산정에 따른 능력석정법의 유소성 평가를 위하여 우선 El Centro 지진을 이용한 단일 지진에 대하여 실현하였다. 예제 구조물은 Chopra\(^\text{13}\) 등이 능력석정법의 질경을 정하하기 위하여 사용한 것으로 연장도가 2.4, 그리고 6미터 고주기의 0.5초와 1초의 구조물에 대하여 실제화하였다. 6개의 예제 구조물은 표 1에 정리하여 다루었다. 여기서 구조물의 주파수 경장비는 \( F_n \), \( F_n \)는 항북강도, \( D_n \)는 항북 변위, 그리고 \( \alpha \)는 구조물의 무게이다. 

동일한 예제에 대하여 Lin 등\(^\text{14}\)은 유사가속도 응답 대신 잠재가속도 응답을 사용하여 요구효산을 산정하여 능력석정법을 개선하고자 하였다. 표에서 6번째 열의 \( D_{n,v,\text{Lin}} \)은 유사가속도 응답을 사용하여 예측한 구조물의 최대변위를, 7번째 열의 \( D_{n,v,\text{Lin}} \)은 Lin 등이 제안한 잠재가속도 응답을 사용하여 예측한 구조물의 최대변위를, 그리고 마지막 열의 \( D_{n,v,\text{Lin}} \)은 비선형 시각상파혜에 의한 최대 비선형응답을 나타낸다.  

본 논문에서는 좀 더 광범위한 유소성 평가를 위하여 0.1초부터 3.0초까지의 주기를 갖는 구조물들에 대하여 유사가속도 응답과 잠재가속도 응답을 이용한 방법에 대하여 각각 성과를 보았다. 또한 항북 강변비가 해석결과에 미치는 영향에 대하여 살펴보기 위하여 항북 강변비, \( \alpha = 0.1, 0.2, 0.3, 0.3 \) 그리고 0.4인 경우에 대하여 해석을 수행하였다. 각 구조물의 연장도는 Chopra 등과 동일하게 2.4, 그리고 6미터에 대하여 해석을 수행하였다. 이를 통해, ATC-40에서 제시한 방법을 이용하여 동기가구와 동기가강의 구조물을 산정한 후, 수렴성을 확보하기 위하여 질적에 따라 면적을 산정하였다.  

해석결과는 그림 7에서 그림 11까지에 정리하여 나타내었다. 그림 7에서 동그라미와 네모로 표현된 각각 4개의 점이 표 1에서 나타난 Chopra 등과 Lin 등이 해석한 구조물을 포함한다. 그림에서 잠재가속도 응답을 사용한 경우의 결과가 점선으로 유사가속도 응답을 사용한 경우보다 큰 결과 값을 갖는 것을 알 수 있다. 유사가속도 응답을 사용한 능력석정법

| 표 1 예제구조물의 특성 및 El Centro 지진에 대한 응답 (\( \alpha = 0 \)) |
|----------------|----------------|----------------|
| System Properties | System Response (cm) |
| \( T_s \) (s) | \( F_n/w \) | \( D_n \) (cm) |
| \( \mu \) | \( D_{n,v,\text{Lin}} \) | \( D_{n,v,\text{Lin}} \) |
| System 1 | 0.5 | 0.1257 | 0.7901 | 6 | 3.536 | 4.88 | 4.654 |
| System 2 | 0.5 | 0.1783 | 1.106 | 4 | 3.075 | 3.65 | 4.402 |
| System 3 | 0.5 | 0.3411 | 2.117 | 2 | 3.284 | 3.31 | 4.210 |
| System 4 | 1.0 | 0.0714 | 1.773 | 6 | 7.922 | 11.71 | 10.55 |
| System 5 | 1.0 | 0.1032 | 2.582 | 4 | 4.453 | 8.31 | 10.16 |
| System 6 | 1.0 | 0.1733 | 4.302 | 2 | 5.318 | 5.367 | 8.533 |
4.2 20개 자진

요구곡선의 산정에 따른 농축액트럼법의 보다 일반적인 유효성 평가를 하기 위하여 20개 자진에 대한 평균 응답을 통한 해석을 수행하였다. 앞서의 경우와 달리, 일반적인 경우는 구조물의 연성도가 높아지지 않고 해석을 통해 성능곡선과 요구곡선이 만나는 성능점을 알아야 연성도를 구할 수 있음을 고려하여, 성능곡선을 가정한 후 상기 기술된 방법들을 이용하여 일반적인 농축액트럼법의 정확성에 따라 성능점을 구하였다.

농축액트럼법의 정확성을 검증하기 위해 사용된 예제 구조물은 주기가 각각 0.1부터 3.0초까지 0.1초씩 변할 때, 탄성 최대 강도에 대한 항복 강도의 비, $e$를 각각 0.1, 0.3, 0.5로 고 정시키고, 항복 후 강성비, $a$는 각각 0, 0.1, 0.2, 0.3, 0.4를 가지는 총 450개의 단차유도 구조물이다. 여기서 탄성 최대 강도에 대한 항복 강도의 비, $e$는 아래의 식과 같이 주어진다. 

$$e = \frac{F_x}{mPS_{a,5}}$$  (18)

여기서, $m$은 구조물의 질량, 그리고 $PS_{a,5}$는 5% 감쇠비의 폐합 일정량에서 구조물의 탄성주기에 해당하는 최대 유사가속도 값이다. 이 경우 항복변위, $D_s$는 아래의 식과 같이 구할 수 있다.

$$D_s = \frac{ePS_{a,5} T^2}{4\pi^2}$$  (19)

![그림 7: 절대가속도 응답 및 유사가속도 응답을 사용한 농축액트럼법의 정확성 비교, 단일지진 ($a=0$)](image)

![그림 8: 절대가속도 응답 및 유사가속도 응답을 사용한 농축액트럼법의 정확성 비교, 단일지진 ($a=0.1$)](image)

![그림 9: 절대가속도 응답 및 유사가속도 응답을 사용한 농축액트럼법의 정확성 비교, 단일지진 ($a=0.2$)](image)
그림 10 세제가속도 응답과 유사가속도 응답을 사용한 능력스펙트럼법의 정확성 비교, 단일지진 (a=0.3)

그림 11 세제가속도 응답과 유사가속도 응답을 사용한 능력스펙트럼법의 정확성 비교, 단일지진 (a=0.4)

그림 12 응답 감소 계수를 이용한 요구곡선의 수정에 따른 능력스펙트럼법의 최대반위 예측 비교 (a=0)

그림 13 응답 감소 계수를 이용한 요구곡선의 수정에 따른 능력스펙트럼법의 최대반위 예측 비교 (a=0.1)

그림 14 응답 감소 계수를 이용한 요구곡선의 수정에 따른 능력스펙트럼법의 최대반위 예측 비교 (a=0.2)
그림 15 응답 감소 계수를 이용한 요구곡선의 수정에 따른 능력밀도함법의 최대변위 예측 비교 (α=0.3)

그림 16 응답 감소 계수를 이용한 요구곡선의 수정에 따른 능력밀도함법의 최대변위 예측 비교 (α=0.4)

그림 17 점프가속도 응답과 유사가속도 응답을 사용한 능력밀도함법의 정확성 비교, 20개 지진 (α=0)

그림 18 점프가속도 응답과 유사가속도 응답을 사용한 능력밀도함법의 정확성 비교, 20개 지진 (α=0.1)

그림 19 점프가속도 응답과 유사가속도 응답을 사용한 능력밀도함법의 정확성 비교, 20개 지진 (α=0.2)
본 논문에서는 요구곡선의 산정방법에 따른 능력스택트럼법의 정확성을 분석하였다. 이를 위해 첫째, ATC-40과 Euro Code에서 제안한 감수 계수 등의 유용성을 평가하였다. 수치 해석을 통하여, 감수계가 상대적으로 작을 경우에는 ATC-40과 FEMA-273에서 주어진 감수 계수와 Euro Code에서 주어진 감수 계수를 이용하여 유사가속도 응답을 구하는 것이 알 수 있다. 이는 테스트 결과, 절대가속도 응답을 사용한 경우와 유사가속도 응답을 사용한 경우의 결과가 유사한 결과를 보였다는 것을 의미한다. 

5. 결론

본 논문에서는 요구곡선의 산정방법에 따른 능력스택트럼법의 정확성을 분석하였다. 이를 위해 첫째, ATC-40과 Euro Code에서 제안한 감수 계수 등의 유용성을 평가하였다. 수치 해석을 통하여, 감수계가 상대적으로 작을 경우에는 ATC-40과 FEMA-273에서 주어진 감수 계수와 Euro Code에서 주어진 감수 계수를 이용하여 유사가속도 응답을 구하는 것이 알 수 있다.
쇠의 평균 가속도 응답과 큰 차이를 보이지 않으나, 강화가 가속에 따라 그 차이가 커질을 알 수 있었다. 특히 Newmark와 Hall의 수정계수에 기초한 ATC-40과 FEMA-273에서 주어진 감소 계수에 의해 구해진 가속도 응답에 비해 Euro Code에서 주어진 감소 계수를 이용하여 구한 가속도 응답이 실제 평균 응답에 보다 유사함을 알 수 있다. 또한 ATC-40과 FEMA-273에서 주어진 감소 계수를 이용하는 경우, 강화 비가 컷에서 가속도, 구간과 속도 구간의 경계로 강한 변분 속성을 가짐을 알 수 있다. 단, 주기가 0초에 가까워짐수록 구조물이 강제가동을 함으로써 실제 가속도 응답은 감쇠비와 상관없이 하나의 최대 지반가속도 값으로 수렴되며, 감쇠 계수를 이용한 경우는 이러한 강제가동이 나타나지 않을을 알 수 있었다. 그리고, ATC-40과 FEMA-273에서 제안한 응답 감소 계수를 사용할 경우, 가속도 응답에서 나타나는 비연속성 때문에 요구값으로 변경하였을 경우 하나의 가속도 응답 값에 해당하는 변위 응답 값이 4개까지 나오는 경우가 생길을 알 수 있었다.

둘째로, 유사가속도 응답을 이용한 방법과 절대가속도 응답을 이용한 방법을 이용하여 요구곡선을 산정하여 능력저하체험법의 정확성을 검증해 보았다. El Centro 진동 데이터를 이용한 단일 지진의 경우의 해석에서 Lin 등이 보고한 결과와 달리, 절대가속도 응답을 사용한 응답계측이 유사가속도 응답을 사용하는 것보다 항상 낮은 결과를 주지는 않는 것으로 나타났다. 보다 일반적인 경험을 알아보기 위하여 20개 지진을 이용한 해석에서도 절대가속도 응답을 이용한 결과가 절대가속도 응답을 이용한 결과에 비해 거의 동일한 결과를 얻을 수 있었다. 그러나 단일진의 경우와 달리 20개 지진의 평균 응답을 이용한 경우, 능력저하체험법의 정확한 결과를 얻을 수 있는 경우가 적지 않음을 알 수 있다. 하지만 탄성 최대 강도에 따른 변이가 컷에서 그리고 변이가 컷에서 변이에 의한 결과의 차이는 거의 없을음을 알 수 있다.

감사의 글

본 연구는 한국과학자재단 목적기초연구 (R01-2003-003-11584 4) 및 스타트사회기반시설 연구 센터의 지원으로 수행되었으며 이에 감사드린다.

참고 문헌


7. Newmark, N. M. and Hall, W. J., Earthquake spectra and design, Monograph Ser, Earthquake Engineering Research Institute, Oakland, California, 1982.


