Effects of Some Factors on In Vitro Production of Embryos from Antral Follicle-Derived Porcine Oocytes II. Effects of EGF and the Number of COCs into Maturation Media on In Vitro Maturation, Fertilization and Development

돼지 난포란 유래 체외수정란 생산에 대한 제요인의 영향 II. 체외성숙배양시 EGF와 COC의 수가 체외성숙, 체외수정 및 체외발달에 미치는 영향

  • Yeon, S.-H. (Animal Genetic Resources station, National Livestock Research Institute, R.D.A.) ;
  • Son, D.-S. (Animal Genetic Resources station, National Livestock Research Institute, R.D.A.) ;
  • Han, M.-H. (Animal Genetic Resources station, National Livestock Research Institute, R.D.A.) ;
  • Wee, M.-S. (Animal Genetic Resources station, National Livestock Research Institute, R.D.A.) ;
  • Choi, S.-H. (Animal Genetic Resources station, National Livestock Research Institute, R.D.A.) ;
  • Lee, K.-S. (Division of Animal Science and Resources, Chungnam National University)
  • 연성흠 (논촌진흥청 축산연구소 가축유전자원시험장) ;
  • 손동수 (논촌진흥청 축산연구소 가축유전자원시험장) ;
  • 한만희 (논촌진흥청 축산연구소 가축유전자원시험장) ;
  • 위미순 (논촌진흥청 축산연구소 가축유전자원시험장) ;
  • 최선호 (논촌진흥청 축산연구소 가축유전자원시험장) ;
  • 이규승 (충남대학교 동물자원학부)
  • Published : 2004.08.01

Abstract

This study was carried out to examine the effects of epidermal growth factor (EGF) and the number of cumulus-oocyte complexes (COCs) on in vitro maturation (IVM) of porcine immature oocytes, and on subsequent in vitro fertilization (IVF) and development (IVD). COCs were collected from antral follicles of porcine ovaries collected from abattoir, and were maturated in modified NCSU-23 (mNCSU-23) with 10% pFF, 0.6 mM cysteine, 50 ${\mu}mM{\beta}-mercaptoethanol$, 1 mM dbcAMP, 10 IU/mL PMSG and 10 IU/mL hCG, which was supplemented with or without 10 ng/mL EGF and into which 50 or 15 COCs per droplet was put. Oocytes matured in vitro, were fertilized in vitro in modified Tris-buffered medium (mTBM) with the final motile sperm concentration of 1${\times}$105 sperm/mL, and subsequently putative embryos were developed in vitro in NCSU- 23. The results are as follows. 1.In the result of IVM, 10 ng/mL EGF supplement duplicated the percentage of C4 group of COCs(41% vs 81%). But the rate of germinal vesicle breakdown (GVBD) and of nuclear maturation were not significantly different between control and EGF supplemented, or between the number of COCs per culture droplet, and there was not a significant interaction between the two factors, either. 2. In the result of IVF, there was not significantly different between control and EGF supplemented, or between the number of COCs per culture droplet, or was not a significant interaction between the two factors, in the rate of sperm penetration, in the percentage of oocytes with male pronucleus (MPN), and in the rate of polyspermy. 3. In the result of IVD, there was not significantly different between control and EGF supplemented, or between the number of COCs per culture droplet in the percentage of cleaved oocytes. There was not significantly different between the number of COCs per culture droplet, but between control and EGF supplemented (p<0.01) in the percentage of blastocysts, the number of inner cell mass (ICM), trophectoderm (TC) and total cells. There was no significant interaction between the two factors anywhere. These results suggested that 10 ng/mL EGF supplement into mNCSU-23 for IVM was effective in the production of more as well as better blastocysts during IVD through increasing the number of cells in those.

본 연구는 pFF, cysteine, ${\beta}$-mercaptoethanol, 성선자극호르몬 등 여러 가지 체외성숙 촉진 물질이 첨가딘 성숙배양액에 EGF 첨가가 돼지 미성숙 난포란의 체외성숙에 효과적인지 또한 그 효가는 배양소적당 COC의 수에 영향을 받는지을 구명하고자 EGF의 첨가 유무와 배양소적당 COC수(50개 또는 15개)를 조합한 $2{\times}2$ 요인시험을 실시했다. 도축돼지의 난소에서 채취한 COCs를 각 처리별로 mNCSU-23 에서 성숙배양하고 mTBM에서 운동정자의 최종동도가 $1{\times}10^5$sperm/mL 의 농도로 체외수정한 다음 NCSU-23 에서 체외발달을 유도한 결과는 다음과 같다. 1. 대조구와 EGF 첨가구에서 C4군의 COC 비율이 각각 41%dhk 82%로써 EGF 첨가가 난구세포의 팽화 정도를 크게 향상시키는 것으로 나타났으나, 난핵포 붕괴율과 핵성숙율에서는 EGF 첨가 여부나 배양소적당 COC 수에 따른 차이가 나타나지 않았고 두 요인간 상호작용도 없었다. 2. 정자 침투율, 웅성전핵 형성율 및 다정자수정 발생율에서도 EGF 첨가 여부나 배양소적당 COC 수에 따른 차이가 유의적인 것이 아니었고, 두 요인간 상호작용 역시 유의적이지 않았다. 3. 난분할율에서는 처리간에 유의적인 차이가 나타나지 않았으나 배반포 발달율, 배반포의 ICM 세포수, TE 세포수 및 총세포수에서는 EGF 첨가구가 모두 유의적으로 높았다(p<0.01). COC수에 따른 차이나 두 요인간 상호작용에서는 유의성이 인정되지 않았다. 결과적으로 돼지 미성숙 난포란을 mNCSU-23에서 성숙배양할 때 10 ng/mL EGF 첨가는 성숙배양 단계에서 난구세포의 팽화를 더욱 심화시키고, 발달배양단계에서 배반포의 세포수와 배반포발달율을 증가시키는데 효과가 있는 것으로 사료된다.

Keywords

References

  1. Abeydeera LR and Day BN. 1997. Fertilization and subsequent development in vitro of pig oocytes inseminated in a modified tris-buffered medium with frozen-thawed ejaculated spermatozoa. Biol. Reprod., 57:729-734 https://doi.org/10.1095/biolreprod57.4.729
  2. Abeydeera LR, Wang WH, Prather RS and Day BN. 1998. Maturation in vitro of pig oocytes in protein-free culture media: fertilization and subsequent embryo development in vitro. Biol. Reprod., 58:1316-1320 https://doi.org/10.1095/biolreprod58.5.1316
  3. Abeydeera, LR, Wang WH, Cantley TC, Rieke A, Murphy CN, Prather RS and Day BN. 2000. Development and viability of pig oocytes matured in a protein-free medium containing epidermal growth factor. Theriogenology, 54:787-797 https://doi.org/10.1016/S0093-691X(00)00390-3
  4. Byun TH, Lee SH and Song HB. 1991. Development of a rapid staining method of the oocytes from domestic animal. Kor. J. Anim. Sci., 33:25-31
  5. Chen L, Russell PT and Larsen WJ. 1994a. Sequential effects of follicle-stimulating hormone and luteinizing hormone on mouse cumulus expansion in vitro. Biol. Reprod., 51:290-295 https://doi.org/10.1095/biolreprod51.2.290
  6. Chen L, Mao SJT, McLean LR, Powers RW and Larsen WJ. 1994b. Proteins of the inter-$\alpha$-trypsin inhibitor family stabilize the cumulus extracellular matrix through their direct binding with hyaluronic acid. J. Biol. Chem., 269: 28282-28287
  7. Coskun S and Lin YC. 1994. Effect of transforming growth factor and activin-A on in vitro porcine oocyte maturation. Mol. Reprod. Dev., 38: 153-159 https://doi.org/10.1002/mrd.1080380206
  8. Coskun, S and Lin YC. 1995. Mechanism of action of epidermal growth factor-induced porcine oocyte maturation. Mol. Reprod. Dev., 42:311-317 https://doi.org/10.1002/mrd.1080420308
  9. Coskun S, Uzumcu M, Lin YC, Friedman CI and Alak BM. 1995. Regulation of cumulus cells steroidogenesis by the porcine oocyte and preliminary characterization of oocyte produced factor(s). Biol. Reprod., 53: 670-675 https://doi.org/10.1095/biolreprod53.3.670
  10. Day BN, Abeydeera LR, Johnson LA, Welch GR, Wang WH, Cantley TC and Rieke A. 1998. Birth of piglets preselected for gender following in vitro fertilization of in vitro matured pig oocytes by X and Y bearing spermatozoa stored by high speed flow cytometry. Theriogenology, 49:360 (abstr.) https://doi.org/10.1016/S0093-691X(98)90713-0
  11. Ding J and Foxcroft GR. 1994. Epidermal growth factor enhances oocyte maturation in pigs. Mol. Reprod. Dev., 39:30-40 https://doi.org/10.1002/mrd.1080390106
  12. Dode MA and Graves C. 2002. Involvement of steroid hormones on in vitro maturation of pig oocytes. Theriogenology, 57:811-821 https://doi.org/10.1016/S0093-691X(01)00700-2
  13. Driancourt MA and Thuel B. 1998. Control of oocyte growth and maturation by follicular cells and molecules present in follicular fluid. A review. Reprod. Nutr. Dev., 38:345-362 https://doi.org/10.1051/rnd:19980401
  14. Edwards RG. 1965. Maturation in vitro of mouse, sheep, cow, pig, rhesus monkey and human ovarian oocytes. Nature, 208:347-351 https://doi.org/10.1038/208347a0
  15. Hunter RHF and Polge C. 1966. Maturation of follicular oocytes in the pig after injection of human chorionic gonadotrophin. J. Reprod. Fertil., 12:525 -531 https://doi.org/10.1530/jrf.0.0120525
  16. Illera MJ, Lorenzo PL, Illera JC and Petters RM. 1998. Developmental competence of immature pig oocytes under the influence of EGF, IGF-I, follicular fluid and gonadotropins during IVM- IVF processes. Int. J. Dev. Biol., 42(8):1169-1172
  17. Iritani A, Niwa K and Imai H. 1978. Sperm penetration in vitro of pig follicular oocytes matured in culture. J. Reprod. Fertil., 54: 379- 383 https://doi.org/10.1530/jrf.0.0540379
  18. Joyce IM, Pendola FL, Wigglesworth K, Eppig JJ. 1999. Oocyte regulation of kit ligand expression in mouse ovarian follicles. Dev. Biol., 214: 342-353 https://doi.org/10.1006/dbio.1999.9437
  19. Kolena J, Vrsanska S, Nagyova E and Jezova M. 2001. Gossypol inhibits follicle-stimulating hormone and epidermal growth factor-stimulated expansing of oocyte-cumulus complexes from porcine preovulatory follicles. Physiol. Res., 50: 627- 630
  20. Li R, Norman RJ, Armstrong DT and Gilchrist RB. 2000. Oocyte-secreted factor(s) determine functional differences between bovine mural granulosa cells and cumulus cells. Biol. Reprod., 63:839- 845 https://doi.org/10.1095/biolreprod63.3.839
  21. Long CR, Dobrinsky JR and Johnson LA. 1999. In vitro production of pig embryos: Comparisons of culture media and boars. Theriogenology, 51: 1375-1390 https://doi.org/10.1016/S0093-691X(99)00081-3
  22. Machaty Z, Day BN and Prather RS. 1998. Development of early porcine embryos in vitro and in vivo. Biol. Reprod., 59:451-455 https://doi.org/10.1095/biolreprod59.2.451
  23. Marchal, R, Feugang JM, Perreau C, Venturi E, Terqui M and Mermillod P. 2001. Meiotic and developmental competence of prepubertal and adult swine oocytes. Theriogenology, 56:17-29 https://doi.org/10.1016/S0093-691X(01)00539-8
  24. Mattioli M, Bacci ML, Galeati G and Seren E. 1989. Developmental competence of pig oocytes matured and fertilized in vitro. Theriogenology, 46: 1201-1207
  25. Moor RM, Dai Y, Lee C and Fulka J. 1998. Oocyte maturation and embryonic failure. Human Reprod. Update, 4:223-236 https://doi.org/10.1093/humupd/4.3.223
  26. Motlik J and Fulka J. 1974. Fertilization of pig follicular oocytes cultivated in vitro. J. Reprod. Fertility., 36:235-237 https://doi.org/10.1530/jrf.0.0360235
  27. Naito K, Fukuda Y and Toyoda Y. 1988. Effects of porcine follicular fluid on male pronucleus formation in porcine oocytes matured in vitro. Gamete. Res., 21:289-295 https://doi.org/10.1002/mrd.1120210310
  28. Petters RM and Wells KD. 1993. Culture of pig embryos. J. Reprod. Fertil., 48:61-73
  29. Prochazka R, Kalab P and Miyano T. 1997. EGF stimulated expansion of porcine oocyte-cumulus complexes is affected by the size of the donor follicle. Theriogenology, 47:199(abstr.) https://doi.org/10.1016/S0093-691X(97)82326-6
  30. Prochazka R, Srsen V, Nagyova E, Miyano Tand Flechon JE. 2000. Developmental regulation of effect of epidermal growth factor on porcine oocyte-cumulus cell complexes: nuclear maturation, expansion, and F-actin remodeling. Mol. Reprod. Dev., 56:63-73 https://doi.org/10.1002/(SICI)1098-2795(200005)56:1<63::AID-MRD8>3.0.CO;2-D
  31. Qiann Y, Shi WQ, Ding JT, Fan BQ and Y Fukui. 2001. Effect of follicle size on cumulus- expansion, in vitro fertilization and development of porcine follicular oocytes. J. Reprod. Dev., 47: 155-152
  32. Rath D, Niemann H and Tao T. 1995. In vitro maturation of porcine oocytes in follicular fluid with subsequent effects on fertilization and embyo yield in vitro. Theriogenology, 44:529-538 https://doi.org/10.1016/0093-691X(95)00224-V
  33. Reed ML, Estrada JL, Illera MJ and Petters RM. 1993. Effects of epidermal growth factor, insulin- like growth factor-I, and dialyzed porcine follicular fluid on porcine oocyte maturation in vitro. J. Exp. Zool., 266:74-78 https://doi.org/10.1002/jez.1402660111
  34. Singh, B, Barbe GJ and Armstrong DT. 1993. Factors influencing resumption of meiotic maturation and cumulus expansion of porcine oocyte-cumulus cell complexes in vitro. Mol. Reprod. Dev., 36:113- 119 https://doi.org/10.1002/mrd.1080360116
  35. Singh B, Meng L, Rutledge JM and Armstrong DT. 1997. Effects of epidermal growth factor and follicle-stimulating hormone during in vitro maturation on cytoplasmic maturation of porcine oocytes. Mol. Reprod. Dev., 46:401-407 https://doi.org/10.1002/(SICI)1098-2795(199703)46:3<401::AID-MRD20>3.0.CO;2-#
  36. Sirotkin AV, Dukesova J and Makarevich AV. 2000. Evidence that growth factors IGF-I, IGF-II and EGF can stimulate nuclear maturation of porcine oocytes via intracellular protein kinase A. Reprod. Nutr. Dev., 40:559-569 https://doi.org/10.1051/rnd:2000137
  37. Sommer P, Rath D and Niemann H. 1992. In vitro maturation of porcine oocytes in the presence of follicular granulosa cells, FSH and/or EGF. Proc. 12th Int. Cong. Anim. Reprod., 1:378-380
  38. Tao T, Rath D and Niemann H. 1995. In vitro maturation of porcine cumulus- oocyte-complexes in the presence of follicular fluid, and IVF and culture to blastocyst stages. Theriogenology, 43: 334 https://doi.org/10.1016/0093-691X(95)92488-U
  39. Vanderhyden BC and Tonary AM. 1995. Differential regulation of progesterone and estradiol production by mouse cumulus and mural granulosa cells by a factor(s) secreted by the oocyte. Biol. Reprod., 53:1243-1250 https://doi.org/10.1095/biolreprod53.6.1243
  40. Vanderhyden BC, Telfer EE and Eppig JJ. 1992. Mouse oocytes promote proliferation of granulosa cells from preantral and antral follicles in vitro. Biol. Reprod., 46:1196-1204 https://doi.org/10.1095/biolreprod46.6.1196
  41. Vanderhyden BC, Cohen JN and Morley P. 1993. Mouse oocytes regulate granulosa cell steroidogenesis. Endocrinology, 133:423-426 https://doi.org/10.1210/en.133.1.423
  42. Wang W and Niwa K. 1995. Effects of epidermal growth factor (EGF) and gonadotropins on cumulus expansion and nuclear maturation of pig oocytes in serum-free medium. Assist. Reprod. Technol. Androl., 7:41-55
  43. Ward FA, Enright BP and Boland MP. 2000. Effect of group size and oocyte to medium volume post-fertilization on the development of bovine embryos in vitro. Theriogenology, 53:306(abstr.)
  44. Yoshida M, Ishigaki K and Kawagishi H. 1990. Blastocyst formation by pig embryos resulting from in vitro fertilization of oocytes matured in vitro. J. Reprod. Fertil., 88:1-8 https://doi.org/10.1530/jrf.0.0880001
  45. Yoshida M, Ishigaki K and Pursel VG. 1992. Effect of maturation media on male pronucleus formation in pig oocytes matured in vitro. Mol. Reprod. Dev., 31:68-71 https://doi.org/10.1002/mrd.1080310112
  46. Yoshida M, Mizoguchi Y, Ishigaki K, Kojima T and Nagai T. 1993. Birth of piglets derived from in vitro fertilization of pig oocytes matured in vitro. Theriogenology, 39:1303-1311 https://doi.org/10.1016/0093-691X(93)90232-T
  47. Yuan YQ, Soom AV, Laevens H, Coopman F, Peelman L and Kruif A. 2000. Single embryo culture affects hatching rate in bovine in vitro- produced embryos. Theriogenology, 53:307 (abstr.)