DOI QR코드

DOI QR Code

Heavy Metal Speciation in Compost Derived from the Different Animal Manures

이축분종(異畜糞種) 퇴비에서의 중금속 화학종분화(化學種分化)

  • Ko, H.J. (School of Agricultural. Biotechnology, Seoul National University) ;
  • Choi, H.L. (School of Agricultural. Biotechnology, Seoul National University) ;
  • Kim, K.Y. (School of Agricultural. Biotechnology, Seoul National University)
  • 고한종 (서울대학교 농생명공학부) ;
  • 최홍림 (서울대학교 농생명공학부) ;
  • 김기연 (서울대학교 농생명공학부)
  • Published : 2004.04.30

Abstract

Composting animal manure is one of feasible treatments that reserves some portion of nutrients of manure. Although the application of compost to arable land has many advantages, the repeated cultivation of the agriculture land will accumulate the level of heavy metals in the soil which is potentially hamful to people and animals. Therefore it is important to know the characteristics concentration and species of heavy metals in a variety of chemical fonns than just total content of the metal. Because the metals in different forms have different mobilities and bioavailabilites. The aim of this study was to examine the total content and the chemical forms of the heavy metals; Cr, Ni, Cu, Zn, As, Cd and Pb in the animal manure composted with sawdust or rice hull as a bulking agent. A total of 75 compost samples were collected throughout the country and classified into the three groups in accordance with the characteristics of raw materials: swine manure, poultry manure, and mixed(swine + poultry + cattle)manure. The compost samples were analyzed for total metal content and fractionated by sequential chemical extractions to estimate the quantities of metals: exchangeable, adsorbed, organically bound, carbonate and residual. The results showed that the heavy metal concentrations in all compost samples were lower than the maximum acceptable limits by the Korea Compost Quality Standards. The concentrations of heavy metals in the swine manure compost were higher than those of both the poultry and the mixed manure compost except for Cr. Zn and Cu concentrations of three different compost ranged from 157 to 839 mg Zn/kg DM(dry matter) and from 47 to 458 mg Cu/kg DM, depending on the composition of animal manures. The predominant forms for extracted metals were Cr, Ni, Zn, As and Ph, residual; Cu, organic; and Cd, carbonate. The results suggested that the legal standards for composts should be reexamined to revise the criteria on the total metal content as well as metal speciation.

축분퇴비를 농경지에 환원시키는 방안은 작물에 필요한 영양분을 공급하는 측면외에도 토양의 이화학적 특성을 개선시켜 비옥도를 증진시키는 긍정적인 면인 있으나 중금속 함량이 높은 퇴비의 연용은 토양 내 중금속을 집적시켜 잠재적인 위해(危害).수준에 이를 수 있다. 그러므로 퇴비의 안전한 사용을 위해서는 총 중금속 함량과 더불어 생태계로의 이동 및 식물에 흡수 이용될 수 있는 중금속의 화학적 형태에 대한 정보가 중요하다. 따라서 본 연구에서는 톱밥이나 왕겨를 수분조절재로 이용한 축분퇴비에 대해서 총 중금속 농도와 중금속 화학종분화(化學種分化)에 대한 조사를 수행하였다. 퇴비의 조제원료로 사용된 축분의 종류에 따라 돈분퇴비, 계분퇴비 및 혼합분퇴비(돈분+계분+우분)로 분류하여 각각 25점씩 총 75점에 대한 축분퇴비시료를 전국에 걸쳐 수집하였다. 분석대상 중금속 원소는 Cr, Ni, Cu, Zn, As, Cd 및 Pb이며, 분석방법은 산분해법에 의한 총 중금속 농도와 단계별 추출법에 의한 치환태, 흡착태, 유기태, 탄산태 및 황화물 잔류태로 분류하여 화학적 분포를 분석하였다. 분석결과, 본 연구에 사용된 모든 축분퇴비의 총 중금속 함량은 비료관리법의 허용기준을 만족하는 것으로 분석되었으며 또한 돈분퇴비의 총 중금속 함량은 계분퇴비나 혼합분 퇴비에 비해 Cr을 제외한 모든 항목에서 높게 분석되었다. 축분 퇴비에 다량으로 존재하는 중금속 원소인 Zn, Cu의 함량은 건물(建物)기준으로 각각 157${\sim}$839mg Zn/kg, 47${\sim}$458mg Cu/kg으로 퇴비에 사용된 가축분의 종류에 따라 편차가 심한 것을 알 수 있었다. 추출된 중금속의 주된 형태는 Cr, Ni, Zn, As 및 Pb은 황화물 잔류태, Cu는 유기태, Cd은 탄산염태로 분석되었다. 본 연구결과 축분퇴비 내 중금속의 화학적 분포를 현행 총 중금속 허용기준에 추가 기준으로 지정하는 퇴비공정규격의 개정이 필여하다고 사료된다.

Keywords

References

  1. Baker, D. E. 1974. Copper; soil, water, plant relationships. Fed. Proc. 33:1188-1193.
  2. Bernal, M. P., Roig, A, Lax, A and Navarro, A F. 1992. Effects of the application of pig slurry on some pbysico-chemical and physical properties of calcareous soils. Bioresour. Technol. 42:233-239.
  3. Emmerich, W. E., Lund, L. J., Page, A L. and Chang. A C. 1982. Solid phase forms of heavy metals in sewage sludge-treated soils. J. Environ. Qual. 11:178-181.
  4. Epstein, E. 1997. The Science of Composting. Technomic Publishing, Pennsylvania, USA.
  5. Fleming, G. A. and Mordenti, A 1991. The Production of Animal Wastes. European Conference on Environment and Agriculture, Stock Fanning in Europe, Mantua, Italy.
  6. Genevini, P. L., Adani, F., Borio, D. and Tambone, F. 1997. Heavy metal content in selected European commercial composts. Compost Science and Utilization. 5(4):31-39.
  7. Greenway, G. M., and Song, Q. J. 2002. Heavy metal speciation in the composting process. J. Environ. Monit. 4:300-305. https://doi.org/10.1039/b110608m
  8. He, X T., Logan, T. J. and Traina, S. J. 1995. Physical and chemical characteristics of selected U. S. municipal solid waste composts. J. Environ. Qual. 24:543-552. https://doi.org/10.2134/jeq1995.243543x
  9. He, X, Traina, S. J. and Logan, T. J. 1992. Chemical properties of municipal solid waste composts. J. Environ. Qual. 21:318-329. https://doi.org/10.2134/jeq1992.213318x
  10. Hsu, J. H. and Lo, S. L. 2001. Effect of composting on characterization and leaching of copper, manganese, and zinc from swine manure. Environmental Pollution. 114:119-127. https://doi.org/10.1016/S0269-7491(00)00198-6
  11. Ihnat, M. and Fernandes, L. 1996. Trace elemental characterization of composted poultry manure. Bioresour. Technol. 57:143-156.
  12. Jongbloed, A. W., Poulsen, H D., Dounnad, J. Y. and Van der Peer-Schwering, C. M. C. 1999. Environmental and legislative aspects of pig production in The Netherlands, France and Denmark. Livestock Production Science. 58:243-249.
  13. King, L. D., Burns, J. C. and Westerman, P. W. 1990. Long-term swine lagoon effluent applications on 'Coastal' bermudagrass: I. Effect on nutrient accumulation in soil. J. Environ. Qual. 19:756-760. https://doi.org/10.2134/jeq1990.194756x
  14. LeClaire, J. P., Chang, A C., Levesque, C. S. and Sposito, G. 1984. Trace metal Chemistry in arid-zone field soils amended with sewage sludge. 4. Correlation between zinc uptake and extracted soil zinc fractions. Soil Sci. Soc. Am. J. 48:509-513.
  15. Menzi, H. and Kessler, J. 1998. Heavy metal content of manures in Switzerland. In: Proceedings of the Eighth International Conference of the FAD Network on Recycling of Agricultural. Municipal and Industrial Residues in Agriculture.
  16. Miller, W. P., Martens, D. C, Zelazny, L. W. and Kornegay, E. T. 1986. Forms of solid phase copper in copper-enriched swine manure. J. Environ. Qual. 15(1):69-72, https://doi.org/10.2134/jeq1986.15169x
  17. Moore, P. A, Daniel, Jr. T. C., Gilmour, J. T., Shreve, B. R, Edwards, D. R and Wood, B. H. 1998. Decreasing metal runoff from poultry litter with aluminum sulfate. J. Environ. Qual. 27:92-99. https://doi.org/10.2134/jeq1998.27192x
  18. Mullins, G. L., Martens, D. C., Miller, W. P., Kornegay, E. T. and Hallock, D. L. 1982. Copper availability, form and mobility in soils from three-aonnual cooper-enriched hog manure applications. J. Environ. Qual. 11:316-320. https://doi.org/10.2134/jeq1982.112316x
  19. Nicholson, F. A., Chambers, B. J., Williams, J. R and Unwin, R J. 1999. Heavy metal contents of livestock feeds and animal manures in England and Wales. Bioresour. Technol. 70:23-31.
  20. NRC. 1998. Nutrient Requirements of Swine(10th Ed.). National Academy Press, Washington, DC.
  21. Petruzzelli, G. 1989. Recycling wastes in agriculture: Heavy metal bioavailability. Agri. Ecosyst. Environ. 27:493-503.
  22. Pichtel, J. and Anderson, M. 1997. Trace metal bioavailability in municipal solid waste and sewage sludge composts. Bioresour. Technol. 60:223-229.
  23. Pinamonti, F., Stringari, G., Gasperi, F. and Zorzi, G. 1997. The use of compost: its effects on heavy metal levels in soil and plants. Resources, Conservation and Recycling. 21:129-143.
  24. SAS Institute Inc. 1999. SAS user's guide. SAS Inst., Inc., Gary, NC.
  25. Sims, J. T. and Wolf, D. C. 1994. Poultry manure management: AgriculturaI and environmental issues. Adv. Agron. 52:1-83. https://doi.org/10.1016/S0065-2113(08)60621-5
  26. Sposito, G., Lund, L. J. and Chang, A C. 1982. Trace metal chemistry in arid zone field soils amended with sewage sludge: r. Fractionation of Ni, Cu, Zn, Cd, and Pb in solid phases. Soil Sci. Soc. Am. J. 46:260-264.
  27. Tessier, A, Campbell, P. G. C. and Bison, M 1979. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 51:844-851.
  28. Wannan, P. R, Muizelaar, T. and Termeer, W. C. 1995. Bioavailability of As, Cd, Cd, Cr, Hg, Mo, Ni, Ph, Se, and Zn from biosolids amended com-post. Compost Sci. and Util. 3(4):40-50. https://doi.org/10.1080/1065657X.1995.10701806
  29. Williams, D. E., Vlamis, J., Pukite, A H and Corey, J. E., 1984. Metal movement in sludge-treated soils after six years of sludge addition: I. Cadmium, copper lead, and zinc. Soil Sci. 137:351-359.
  30. Zorpas, A A, Constantinides, T., Vlyssides, A G., Haralambous, I. and Loizidou, M. 2000. Heavy metal uptake by natural zeolite and metals partitioning in sewage sludge compost. Bioresour. Technol. 72:113-119.
  31. 농림부. 2001. 축산분뇨처리시설 운영실태 조사 결과.
  32. 농업과학기술원. 1997. 비료의 품질검사방법 및 시료 채취기준. 농촌진흥청. pp. 3-78.
  33. 농업과학기술원. 1999. 친환경농업을 위한 가축 분뇨 퇴비.액비 제조와 이용. 농촌진흥청. pp. 52-70.
  34. 농촌진흥청. 2002. 비료관리법령.
  35. 축산기술연구소. 2000. 가축분뇨 자원화 및 이용기술 심포지움. 농촌진흥청. pp. 5-19.
  36. 축산기술연구소. 2001. 사료표준분석방법. 농촌진흥청. pp. 81-96.
  37. 홍영진, 임희석, 백인기. 2002. 사료 내 Cu 및 Zn-Methionine Chelates 첨가가 육계의 생산성에 미치는 영향. 한국동물자원과학회지. 44(4)399-406.

Cited by

  1. Correlation between Raw Materials and Chemical Contents of Livestock Compost vol.55, pp.2, 2013, https://doi.org/10.5389/KSAE.2013.55.2.037
  2. Comparison of Fecal Microbes' Survival in Soil between Compost Surface Application and Soil Incorporation vol.57, pp.3, 2015, https://doi.org/10.5389/KSAE.2015.57.3.001
  3. Heavy Metals Contents and Chemical Characteristics in Compost from Animal Manures vol.26, pp.2, 2016, https://doi.org/10.15269/JKSOEH.2016.26.2.170