A Multidisciplinary Design Optimization Study for Aircraft Composite Wing with Tip Store
Seung-Moon Jun*, Myoung-Keon Lee* and Jae-Hwa Lee*

ABSTRACT
This paper presents MDO(Multidisciplinary Design Optimization) study results for aircraft composite wing structure with tip store. The objective is to identify key design parameters in the composite wing structure design process. The store location and the effect of the store aerodynamics and mass are the variables included. The ICW(Intermediate Complexity Wing) wing box model is optimized with constraints on the static strength, manufacturing limit and flutter speed. The thicknesses and the cross-sectional areas of the structural elements are the design variables in the optimization. The MSC/NASTRAN is the primary tool used in this study. Failure criteria of composite laminate are examined regarding the practical design. The aerodynamics of the tip store significantly affects the aeroelastic instability of ICW model. The aeroelastic instability of the optimized structure is very sensitive to the tip store movement along the tip chord. The present results indicate that the selection of tip store model fidelity is very important during the design process.

초 록
본 논문에서는 날개끝 스토어가 장착된 항공기 복합재 날개구조에 대한 다분야 통합 최적화 설계를 수행하였다. 스토어 위치, 중량 및 공력효과 등을 고려하여 복합재 날개구조 설계 과정에서 중요한 고려인자가 무엇인지 파악하고자 하였다.

경적장도, 제작한계 및 플러터 속도를 구속조건으로 하여 ICW 날개 모델을 최적화 하였다. 각 요소의 두께와 단면적을 설계 변수로 사용하였다. 최적화 설계 도구로서 MSC/NASTRAN을 사용하였다. 실용적인 설계 관점에서 복합재 적층 파손식 적용을 검토 하였다. 날개끝 스토어의 공력적 효과가 ICW 날개 모델의 공란성 불안정 특성에 큰 영향을 주었다. 최적화된 구조의 공란성 불안정성이 날개끝 스토어가 날개 시위방향으로 움직임에 따라 아주 민감하게 변화하였다. 이러한 결과로 볼 때 날개끝 스토어 모델의 정밀도가 설계 과정에서 아주 중요한 인자임을 알 수 있었다.

Key Words : Multidisciplinary Design Optimization(다분야 통합 최적설계, MDO), Composite Wing(복합재 날개), Flutter(플러터), Intermediate Complexity Wing Model(ICW 모델)

* 2003년 11월 17일 접수 ~ 2003년 12월 22일 심사완료
* 정회원, 국방과학연구소
연락처 E-mail : smjun@add.re.kr
대전시 유성구 웅지공사사 35-3
I. 서론

 대부분의 공항공기는 스토어를 항공기 외부에 장착할 수 있도록 설계되고 있다. 미사일, 폭탄, 연료탱크 및 전자기, 방산용품을 위한 포드 등과 같은 외부장착 스토어들이 주로 사용된다. 이와 같은 스토어 장착은 항공기의 구조, 공기역학 및 공력탄성 성능에 영향을 미칠 수 있다. 스토어의 강성이, 장착위치 및 중량은 항공기 날개의 동적인 거동에 아주 큰 영향을 준다. 그러나 스토어의 공기저항은 고려 대상에 따라 좌우될 수 있어서 스토어의 공기저항 효과 고려 여부는 설계자의 중요한 결정이 될 수 있다. 이에 충격에서는 스토어의 공기저항 영향에 대한 일정한 규칙을 발견하려고 많은 노력을 기울였다. 그러나 특별한 경우에 대한 가이드라인 정도를 얻은 뿐 그 이상의 결과를 도출해 내지 못하였다[1]. 그러므로 설계자의 입장에서 공기저항 효과를 고려한 스토어의 영향을 어느 정도 상세하게 반영하여야 하는 문제는 앞으로도 계속 연구의 관심이 되고 있는 실정이다[2-5].

공용 항공기 비행교반(flight manual)에는 store limitation이라는 항목이 있다. 여기에는 각 종의 외부장착 스토어 형상들에 대한 항공기의 용용조건들이 명시되어 있는데, 대부분이 원래의 항공기 운용범위를 축소 제한하고 있다. 이것은 항공기를 개발할 때 다양한 외부장착 스토어 형상을 모두 충족할 수 있는 설계가 대단히 어렵다는 것을 의미하며, 다른 한편으로는 이러한 관련된 설계 기법에 대한 보다 많은 연구가 필요하다는 것을 시사하고 있다[6].

복합재료의 방향성을 이용한 항공기 날개 구조의 테일링링 설계 기법은 미래의 항공기 구조가 다양하면서 가혹한 설계 환경을 겪을 수 있는 가능성은 제시하고 있다[7,8]. 더욱이 외부장착 스토어 형상 항공기야말로 다분야 통합 최적설계(MDO : Multidisciplinary Design Optimization) 기법을 적용하여 복합재 구조의 포텐셜을 극대화할 수 있는 적합한 설계 대상이라고 할 수 있다. 스토어를 고려한 평판상태 모델을 사용한 설계연구에 비하여 본 연구는 설계 구조에 가까운 ICW (Intermediate Complexity Wing) 모델[6,8]을 사용하여 실용적인 설계 가능성을 탐구하고자 하였다.

본 연구의 목표는 MDO 기법을 적용하여 스토어가 장착된 항공기 복합재 날개 구조를 설계하고자 할 때 중요한 고려 인자의 파악이다. 스토어의 중량과 위치 및 공기저항 효과가 날개 최적화 설계에 미치는 결과를 언급하였고, 설계연구 결과로서 향후 필요한 연구방향을 제시하고자 하였다. 설계에 적용한 외부장착 스토어로는 날개 끝 미사일을 고려하였다. 다분야 통합 최적화 설계 제한조건으로는 항공기 구조 제작성과 재료강도 및 공력탄성학적 안정성을 적용하였다. 설계 항공기 구조 설계에 근접하기 위하여 전형적인 날개구조 요소들을 표현할 수 있는 날개 모델을 사용하였다. 또한 산업계에서 일반적으로 사용하고 있는 복합재 직경 방식을 사용하고 실용적인 설계결과와 복합재 직경의 파손시간의 관계를 논하였다. 최적화 설계 도구로서 MSC/NASTRAN 2001 (SOL 200)을 사용하였다.

II. 본론

2.1 MDO 설계식

목적함수 \(F(X) \)에 대하여 설계변수 \(X \)를 최적화 하기 위한 최적화 설계식을 다음과 같이 표현할 수 있다.

\[
\text{Minimize} \quad F(X) = f(x_1, x_2, ..., x_n) \tag{1}
\]

날개 구조를 설계하기 위한 목적함수로서 구조 중량을 사용한다.

설계 요소의 응력, 최대변위 또는 공탄성 불안정 정도 제한을 위하여 다음과 같은 부등식 구조 조건을 사용한다.

\[
g_i(X) = g_i(x_1, x_2, ..., x_n) \leq \bar{g}_i, \quad i = 1, 2, ..., k \tag{2}
\]

설계변수들 간에 연관성/design variable linking을 부여하고자 할 때 다음과 같은 동식 제한조건을 부여한다. 이와 같은 방법을 적용하면 설계변수의 개수를 절감할 수 있는 이점이 있으며 특수한 복합재 직경 형식과 같은 설계의도를 반영할 수 있다.

\[
h_j(X) = h_j(x_1, x_2, ..., x_n) = \bar{h}_j, \quad j = 1, 2, ..., p \tag{3}
\]

제작이 가능한 최소 및 최대 두께 또는 설계 균열에서 요구하는 최소 기준지를 고려하기 위하여 다음과 같은 상하 구조조건을 사용한다.

\[
X^\ell \leq X \leq X^\nu \tag{4}
\]
속성표 함수의 구배함수(gradient function)들로 나타낸다. 설계 변수를 구조요소의 두께로 정할 경우 중량 목적함수 구배 함수식은 다음과 같이 이상 양의 값을 가질 것이다.

\[\frac{\partial F}{\partial x} > 0 \text{ for thickness variables} \quad (5) \]

설계모델로서 유한요소 모델을 사용할 경우 설계 변수에 대한 응력 및 변위 구속조건의 구배함수는 통상의 최적화 설계기법으로 잘 정의되어 있는 각 유한요소의 응력 및 변위 구배함수 계산 기법을 적용할 수 있다. 그러나 MDO를 위하여 공탄성을 고려할 경우 설계변수에 대한 공탄성 불완성 속도의 구배함수가 필요하며 다음과 같은 공탄성 지반방정식으로 유도할 수 있다.

\[(-\omega^2 M + K - q_n A) q = 0 \quad (6) \]

여기서 \(M \)과 \(K \)는 각각 일반화된 질량과 강성에 대한 행렬이다. \(\omega \)는 플러터 상태에서의 헤모닉 진동수이고, \(q_n \)는 동역으로 \((\rho L^2/2) \)로 나타난다. \(q \)는 일반화된 좌표 벡터이다. \(A \)는 구조 변형에 따른 공기력 격자변형과 그에 따른 공기력 변화를 연관시켜 주는 공기력 상관관계 행렬이다. 이식으로부터 설계 변수에 대한 플러터 속도의 구배함수를 설계변수에 대한 유한요소 모델의 질량 및 강성 구배함수와 환산진동수 (reduced frequency)에 대한 공기력 상관관계의 구배함수를 사용하여 다음과 같이 표현할 수 있다[8].

\[\begin{align*}
V_i &= -\frac{b^2}{K} K_i - \frac{b^2}{2k} A_i \\
\lambda_i &= \left[p'(K,-\lambda M)q - \lambda p' A_i q K_i \right] / p'(M+\Delta)q
\end{align*} \quad (7) \quad (8) \]

여기서 \(\lambda = \omega^2 \), \(\bar{\lambda} = 1/\omega^2 \), \(p' \)는 \(q \)에 해당하는 고유벡터를 나타내며 환산진동수 \(\mathbf{K} \)는 하모닉 주파수와 기준 시위값이 및 속도를 사용하여 \(\omega b/V \)로 정의한다.

2.2 복합재 남개 설계 모델

본 연구에서 사용한 복합재 남개는 ICW 모델 [6,8]이다. 이 모델은 3개 스파과 11개 리브로 이루어진 전형적인 전투기 남개 형상 내부 배열 구조를 가지고 있다. Fig. 1은 ICW 남개의 유한요소 모델이다. 스파와 리브는 전단력 CSHEAR 요소, 스파는 CTRIA3 및 CQUAD4 요소로 모델링 하였다. 경계조건으로 역근(wing root)을 고정지지(clamp condition) 하였다. 모델에 사용된 스파 재료는 Gr/Ep 복합재이며, 그 외 내부구조는 AL7050 알루미늄을 사용하였다.

복합재 남개 스파의 선수방향 0°기준은 센터스파(center spar) 방향에 평행하도록 정의하였다. 스파 설계에 사용한 각각각은 0°, +45°, 90°이다. 스파는 유한요소 입력에서 엔보레이마로 정의하여 설계 결과가 적용 순서에 무관하게 결정되도록 하였다. 이와 같은 접근법은 기본설계 단계에서 적용 구성 비율을 결정하는데 주로 사용되는 방법이다. +45°층과 -45°층의 두께에 대한 설계 변수를 서로 동일한 값으로 임크 시각으로서 symmetric balanced 적용을 구현할 수 있도록 하였다.

외부 장착 스폰에서 AIM-9급 미사일을 사용하였다. 미사일 몇체는 유한요소 모델에서 BAR 요소로 모델링하였다. Fig. 2, 3은 미사일에 대
Fig. 3. Aerodynamic model of a missile

Fig. 4. FEM model of the missile at 25% tip chord attachments

Fig. 5. Aerodynamic model of the wing with a missile at 25% tip chord

한 유한요소 모델과 공기력 모델 형상을 보여주고 있다.
미사일은 난개 끝단에 장착되며, 미사일 무게 중심은 난개 시위 25%에 위치시켰다. Fig. 4, 5는 난개 끝단에 장착된 미사일의 유한요소 모델과 함께 그려한 공기력 모델이다.

2.3 통합 최적화 설계 조건

설계 변수로는 복합재 스긴은 각 층의 두께를, 금속재 내부구조는 스파와 리브의 웨 두께를 각 선택하였다. 제작성을 고려하여 복합재 스긴 각 층의 최소 두께는 0.005 in로, 금속재 구조의 최소 두께는 0.04 in로 제한하였다.

기동허용 제한으로 계산한 정적설계 하중을 사용하였고, 해면고도 700 노트에서 공탄성 불안정성이 발생하지 않도록 제한조건을 정의하였다. 해석을 위한 입력 힘수는 0.8로 정하였으며 폴리타 해석에서 마하수와 속도의 매칭이 고려되지 않았다.

2.3 결과 및 고찰

복합재료에 대한 Hill 파손식과 각 종의 섬유 방향 변형률을 제한하는 방법을 각각 적용한 설계 결과를 비교하였다. Fig. 6은 각각의 경우에 대한 최적 설계 결과로서 복합체 난개 스긴의 각 층 두께 분포를 보여주고 있다.

항공기 제작성을 고려하여 스긴 두께 분포를 검토하였을 경우 각 층의 섬유방향 변형률을 구축조건으로 적용한 때 설계적인 설계결과를 얻을 수 있었다. 앞으로 나오는 설계에서는 섬유방향 변형률을 제한하는 파손 판별기준을 적용하였다.

Fig. 6. Skin thickness distributions of the composite wing, optimized with different failure criteria
날개 결단에 스토어 무계중심(C.G)이 날개끝 시위 25%에 장착된 항공기 날개 모델(Fig. 4, 5)을 기준 형상으로 정하였다. 이와 같은 기준모델에 대하여 MDO 기법을 적용하여 스토어의 중량, 위치 및 기능적 효과가 날개구조 최적화 설계에 미치는 영향성을 검토하였다.

복합재 스킨 날개와 알루미늄 스킨 날개에 대하여 최적화 설계를 하였다. Table 1은 각 설계 결과에 대한 중량과 고유진동수 해석 결과를 비교한 것이다. 복합재 구조가 금속재 구조보다 적은 중량으로 다양한 설계 제한조건을 만족하는 설계가 가능하다는 것을 보여주고 있다.

<table>
<thead>
<tr>
<th></th>
<th>복합재 날개모델</th>
<th>금속재 날개모델</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>중량</td>
<td>초기중량: 546.5</td>
<td>고정중량: 578.3</td>
<td>고정중량: 531.3 lb</td>
</tr>
<tr>
<td>(lb)</td>
<td>설정후중량: 607.9</td>
<td>712.0</td>
<td></td>
</tr>
<tr>
<td>고유진</td>
<td>Mode 1: 4.26</td>
<td>4.88</td>
<td></td>
</tr>
<tr>
<td>동수</td>
<td>Mode 2: 5.52</td>
<td>7.11</td>
<td></td>
</tr>
<tr>
<td>Mode 2: 22.8</td>
<td>23.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mode 4: 45.8</td>
<td>50.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mode 5: 55.6</td>
<td>61.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mode 6: 79.8</td>
<td>80.2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* 균일한 스킨 두께 (최적화 초기 모델)

복합재 날개와 금속재 날개의 스킨 전체 두께 분포를 Fig. 7에 나타내었다.

그림에서 보는 바와 같이 복합재 날개에 대한 최적화 설계 결과가 제작성 측면으로 보았을 때 보다 전형적인 스킨구조의 두께분포를 보여주고 있음을 알 수 있다. 공탄성 제한조건에 대한 설계 결과가 복합재 날개의 경우는 다이버전스로

![Composite wing](image1)

![Metallic wing](image2)

Fig. 7. Skin thickness distributions for the optimized wing

![0° plies and ±45° plies](image3)

![90° plies and ply %](image4)

Fig. 8. Thickness ratio distribution for each lay-up angle, optimized composite wing
Table 2. Flutter analysis results for various tip missile locations

<table>
<thead>
<tr>
<th>날개끝 미사일</th>
<th>Aeroelastic instability Speed (knots)</th>
<th>Frequency (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>c.g. 위치</td>
<td>모델</td>
<td></td>
</tr>
<tr>
<td>0%C</td>
<td>mass+aero</td>
<td>825(D)</td>
</tr>
<tr>
<td></td>
<td>mass only</td>
<td>1075(F)</td>
</tr>
<tr>
<td>25%C</td>
<td>mass+aero</td>
<td>700(D)</td>
</tr>
<tr>
<td></td>
<td>mass only</td>
<td>600(F)</td>
</tr>
<tr>
<td>50%C</td>
<td>mass+aero</td>
<td>325(F)</td>
</tr>
<tr>
<td></td>
<td>mass only</td>
<td>375(F)</td>
</tr>
</tbody>
</table>

F : Flutter
D : Divergence

공탄성 불안정 속도가 증가됨을 나타내고 있다. 날개끝 스토어의 C.G 위치가 날개끝 시위 0%, 25%일 때 스토어의 공기력 효과를 고려하면 다이버전스가 발생하는 반면, 스토어의 중량만 고려하였을 경우에는 모든 위치에서 풀러티가 발생하였다. 본 논문의 해석 결과를 요약하면, 공탄성 불안정 속도는 스토어의 모델형태 및 장착 위치에 따라 일정한 경향을 나타내고 있지 않았다. 이는 항공기의 다양한 외부 장착 형상을 모두 충족할 수 있는 항공기 설계를 위하여 보다 상세한 연구가 필요함을 보여주고 있다. 또한 보수적인 공탄성 불안정 속도를 예측하는데 있어서 스토어 모델 선정에 대한 추가 연구가 필요하다고 판단된다.

제 3. 결론

MDO 기법을 적용하여 복합재 날개 구조를 설계할 때 스토어가 미치는 영향을 살펴보았다.
설계 모델에 사용한 각각은 0°, ±45°, 90°이며
적축은 symmetric balanced로 하였다. 복합체 날개
설계 시 각 층의 섬유방향 변형률을 제한하는
적정강도 파손기준을 적용함으로써 실용적인 설
계가 가능함을 알 수 있었다. 또한 근속재 날개
보다 복합재 날개 구조로 설계하는 것이 적은 중
량으로 항공기의 공력탄성학적 특성을 향상시킬
수 있는 가능성을 확인하였다.

항공기 날개를 설계하는데 있어서 스토어의
장착 위치와 공기력 효과가 아주 중요한 인자임
을 확인하였다. 스토어 위치의 변경에 따른 제설
계 과정에서 MDO 모델의 정밀도를 결정할 때
스토어의 장착 위치에 따라 항공기 날개의 공력
탄성학적 특성이 아주 민감하게 반응함을 고려하
여야 할 것이다.

기존의 MDO 소프트웨어들이 항공기의 다양
한 외부 장착 형상을 독립적으로 고려하는 것이
불가능한 실정이므로 이를 가능하게 할 연구의
필요성을 강조하고자 한다.

참고문헌

1) Turner, C., "Effect of Store Aerodynamics

2) Striz A. G. and Jang S. K., "Optimization

3) Triplett W. E., "Wind Tunnel Correlation
Study of Aerodynamic Modeling for F/A-18

4) 전승문, "날개구조 다분야 통합설계에 미치
는 외부 장착물의 영향성 검토", 한국항공우주학
회 춘계 학술발표회 논문집, 2002.

5) 이명건, 전승문, 이재화, "날개류 스토어가
복합재 날개 구조 MDO에 미치는 영향 검토",
한국항공우주학회 추계 학술발표회 논문집, 2002.

6) S. Jun, V. Venkayya and V. Tischler,
"Multidisciplinary Design Optimization of a

7) Frank H. Gern and Liviu Librescu,
"Aeroelastic Tailoring of Composite Wings
Exhibiting Nonclassical Effects and Carring
External Stores", J. Aircraft, Vol. 37, No. 6,
Nov. 2000, pp.1097-1104.

8) F. Eastep, V. Tischler, V. Venkayya, and
N. Khot, "Aeroelastic Tailoring of Composite

9) Johnson, E.H., and Venkayya, V.B.,
"Automated Structural Optimization System
(ASTROS), Volume I-Theoretical, Manual," U.S.
Air Force Wright Aeronautical Labs.,

10) R.F. Gibson, Principles of Composite
Material Mechanics, McGraw-Hill, Inc., New
York, 1994, pp.48.

11) MIL-HDBK-5F, Metallic Materials and
Elements for Aerospace Vehicle Structures, Nov.
1990.

12) 황철호, 주재현, "Initial sizing of