Application of Direct Simulation Monte–Carlo Method to Inviscid Flows Calculations

Young-In Choi*, Hyeon C. Gong*, Kyoun-Su Seo*, Miok Joh*, JoonHo Lee* and Bum-Seok Oh*

ABSTRACT

In these days the use of Direct Simulation Monte Carlo (DSMC) method in rarefied gas dynamics is a widely accepted approach. At the altitude of 100 km or higher, the air density becomes very low. So it is impossible to describe rarefied regimes by continuum equations. Thus, a DSMC method based on the molecule dynamics is developed for the simulation of rarefied gas flow. The advantage of DSMC methods is the possibility to simulate various physical processes. On the other hand, the disadvantage is that DSMC methods require large amount of computing time compared with finite-difference methods. This disadvantage can be to some extent compensated in parallel computations. In this research, a modified DSMC method for inviscid flows for saving computation time showed that there is no difference between the result of FDM and that of the modified DSMC method, and proved the validity of the modified DSMC algorithm.

초 록

현재 직접모사 몬테카를로 방법은 회박기계역학에서 널리 활용되고 있다. 고도가 100킬로미터 이상의 지역에서 공기의 밀도는 매우 낮다. 따라서 일반적인 연속체방정식으로 회박지역의 유동을 계산하고 나타내는 것은 거의 불가능에 가깝다. 그래서, 회박기계유동의 시뮬레이션을 위해 분자역학의 기반을 둔 직접모사 몬테카를로 방법이 개발되었다. 직접 모사 몬테카를로 방법의 가장 큰 장점 중 하나는 비교적 쉬운 알고리즘으로 다양한 물리 적 과정을 시뮬레이션 할 수 있다는 것이다. 반면, 단점은 FDM과 비교했을 때, 비교적 계산시간이 오래 걸리는 것이다. 하지만, 오늘날 이러한 단점은 병렬처리를 이용하여 많이 개선되고 있다. 본 연구에서는 직접모사 몬테카를로 방법의 최대 단점인 계산시간을 줄이기 위하여 비점성 유동을 계산하는 일반적인 직접모사 몬테카를로 방법의 알고리즘을 수정하여 제시하였다. 수정된 알고리즘으로 비점성 유동 계산에 직접 적용하여 얻은 결과를 FDM으로 얻은 결과와 뉴턴 방법으로 구한 결과를 비교하여 결과의 차이가 거의 없음을 증명하여 수정된 직접모사 몬테카를로 방법의 알고리즘의 타당성을 입증하였다.

Key Words: DSMC Method(직접모사 몬테카를로 방법), Rarefied Gas Dynamics(회박기계역학), Inviscid Flows(비점성 유동), Modified(수정된)

* 2003년 9월 8일 접수 ~ 2004년 2월 4일 심사완료
* 정회원, 한국항공우주연구원
연락처, E-mail: choinkari@kari.re.kr
대전광역시 유성구 어onsense 45번지
1. 서 론

자연 기술, 경제 그리고 다른 분야에서 일어나는 많은 현상들에는 우연이라는 현상이 있다. 다시 말하면, 어떤 현상이 앞으로 일어날지 정확하게 예측하는 것은 불가능하다는 것이다. 하지만, 이러한 현상이 일정한 조건에서 충분하게 많은 관찰된다면, 그러한 현상을 양적으로 통계로 나타낼 수 있다. 예를 들어, 동전을 던져서 앞과 뒷가 나올 경우를 생각해 본다면 쉽게 이해할 수 있을 것이다. 직접모사 몬테카를로 방법은 위에서 언급한 것처럼 모사입자를 바탕으로 하는 다양한 수학적 문제를 해결하는 방법이다.

현재 직접모사 몬테카를로(Discrete Event Simulation) 방법은 회 박기체역학(Rarefied Gas Dynamics)에서는 널리 받아들여지고 있다. 우주항공선이나 인공위성 지구 대기권 밖에 나가거나 다시 지구로 들어올 때 처음 만나는 지역이 바로 회반역역(Rarefied Regime)이다. 일반적으로 회반역역(Rarefied Regime)이라고 하면 고도가 100km 혹은 그 이상의 지역을 말한다. 이 회반역역(Rarefied Regime)은 공기 밀도가 매우 낮기 때문에, 우주항공선이나 인공위성 주위를 향하는 공기의 흐름을 일반적으로 기상에서 사용하는 Navier - Stokes 방정식이나 Euler 방정식과 같은 연속체 방정식(continuum equation)으로 묘사하는 것은 불가능하다. 이러한 직접모사 몬테카를로 방법의 장점은 다양한 물리적 과정을 비교적 쉬운 알고리즘으로 시뮬레이션 할 수 있다는 것이다. 반면에 가장 큰 단점은 FDM과 비교했을 때 계산 시간이 오래 걸리다는 것이다. 왜냐하면 직접모사 몬테카를로 방법의 오차는 1/√N이다. 여기서 N은 계산에 사용되는 총 분자 수도이다. 이것은 직접모사 몬테카를로 방법의 정확도를 가지고 있다는 것을 의미한다. 따라서 계산에 사용되는 분자의 수가 많아지면 많아짐수록 더욱 정확한 값을 얻을 수 있는 반면에, 계산 시간은 점점 더 걸리게 된다. 하지만, 오늘날 이러한 단점은 프로그램의 병렬처리를 통하여 어느 정도 극복하고 있다.

본 연구에서는 병렬처리시대에 비점성 압축성 유체 유동을 해석하기 위한 직접모사 몬테카를로 방법의 알고리즘을 약간 수정하여 계산 시간을 줄이도록 하였다. 또한, 수정된 직접모사 몬테카를로 방법 알고리즘으로 불연속적인 기체표면을 시간 ∆t 동안 봉괴시킬 때 ‘relaxation - transition’ 기법을 사용하여 해석해 보았다. 이 기법은 두 부분의 독립적인 단계(첫째는 물리적 과정에서 분자의 충돌도 없는 transition, 둘째는 각각의 cell 안에서 비교적 안정적인 relaxation)로 구성되어 있다. 그래서, 수정된 알고리즘으로 얻은 결과(압력, 밀도) 동일한 조건으로 FDM(Roe의 기법)으로 얻은 결과와 비교하여 정확도 또는 계산시간에서 그 결과 차이가 없음을 보였다. 마지막으로 수정된 알고리즘으로 비교적 유체 운동에서의 평판 해석을 해 보았다. 비점성 압축성 유체 유동 속에 위치한 아주 낮은 폭판을 수정된 직접모사 몬테카를로 방법 알고리즘을 이용하여 방출각과 마하수에 따라 압력계수 C, 방향계수 C를 구하고 그 결과를 이론적인 계산을 통하여 얻은 값들과 비교하여 결과가 거의 일치함을 보였다.

2. 본 론

2.1 알고리즘의 수정

직접모사 몬테카를로 방법은 1949년 미국의 Neiman과 Ulam에 의해 처음 개발되었다. 물론 1873년 토마의 논문에서 처음으로 몬테카를로와 관련된 이론이 출판되었다. 하지만, 실제로 현재의 직접모사 몬테카를로 방법이 완성된 것은 호주 멸비리대학교의 Bird에 의해서도 1960년대 오스트레일리아의 Bird에 의해 개발된 직접모사 몬테카를로 방법은 컴퓨터 메모리 안에서 실제 분자를 대표하는 모사입자를 생성하여 모사입자 이동과 충돌을 계산하고 통계적 평균을 통해 유동 변수 값을 구하는 기법이다. 다시 말하면, 실제유동을 모사하기 위해 실제 유동의 많은 입자를 수많은 10^6개의 가상 모사입자로 대표하여 유동평균에서 추적한다. 시간에 따른 입자의 이동, 입자간의 충돌, 확산 변환, 계면에서 발생하는 상호작용 등 유체분자의 행태를 통계적 기법으로 처리하여 전체 유동장의 거시적 특성을 분석하는 방법이다.

리시아에서도 직접모사 몬테카를로 방법을 이용한 연구가 1980년대 초반부터 이뤄졌는데, 모스크바 근교의 러시아과학이 위치한 TsAGI 연구소의 Kogan, Kravchuk, khlopkov가 쓴 TsAGI Scientific Notes에서 Boltzmann 방정식(1)을 기초로 하여 많은 범위에서 회박기체 유동을 계산할 수 있는 가능성을 위해서 타여했다(여기
서 f 는 속도분포함수, ξ 는 모사업자속도, $K(f)$는 충돌의 합). 또한, 확률분포함수를 사용하여 회락가체 유동의 모델링뿐만 아니라, 연속체까지도 모델링이 가능하다는 것을 보여주었다.

모델링을 하기 위한 알고리즘은 ‘Transition - Relaxation’ 기법을 사용한다. 이 기법은 계산 시간 Δt 동안 두 가지의 독립적인 물리적 과정 (첫째는 분자의 충돌이 없는 Transition(2), 둘째는 각각의 cell 안에서 비교적 안정적인 Relaxation(3)) 으로 나뉘어진다. 그래서 Boltzman 방정식도 두 부분으로 나누어 질 수 있다.

$$\frac{\partial f}{\partial t} + \nabla \cdot (\xi f) = K(f)$$ (2)
$$\frac{\partial f}{\partial t} = K(f)$$ (3)

비정상 압축성 기체 유동의 모델링을 위해서 사용되는 분포함수는 Maxwellian 분포함수5 f_0 (4)를 사용한다.

$$f_0 = \left(\frac{m}{2\pi kT} \right)^{3/2} \exp \left(- \frac{m (\xi - \overrightarrow{U})^2}{2kT} \right)$$ (4)

위 식들을 기본으로 한 가장 일반적인 직접모사 몬테카를로 방법 알고리즘은 다음과 같은 단계이다.

1) 계산 영역을 작은 cell로 나누고 각각의 cell 에 밀도, 온도 및 속도를 준다(각각의 cell에 cell의 부피에 따라 분자의 수를 준다. 모사업자의 수는 단위 밀도와 단위 부피에 따라 결정된다).

2) 각각의 모사업자들에 좌표 $\overrightarrow{x_i}$와 속도 $\overrightarrow{\xi_i}$ (Maxwellian 분포함수 f_0 에 따라 결정되는 모사업자)를 준다.

3) 각 모사업자들의 온도와 속도의 합을 구한 다(conservation).

4) 모든 모사업자들은 단위 시간 Δt 동안 그들만의 속도에 따라 이동한다. 이동 후, 새로운 좌표를 구성한다. 새로운 좌표는

$$\overrightarrow{x'_i} = \overrightarrow{x_i} + \overrightarrow{\xi_i} \Delta t$$ (5)

로 구할 수 있다.

5) 단위 시간 동안 각 cell속에 있는 모사업자들이 이동함으로써 계산 전 cell속에 있던 모사업자들의 양과는 다른 분자가 와지므로 각각의 cell들은 새로운 밀도를 가진다. 그리고 여기서 절반 속도(cell 속에 있는 분자의 평균 속도)와 온도(cell 속에 있는 분자의 평균 에너지)를 구할 수 있다.

6) 1-5)까지의 과정을 정해진 시간 동안 반복한다.

위의 알고리즘에 따르면 단위 시간 Δt 가 정해진 시간까지 반복되는 동안 각 모사업자들의 속도를 만들어 Maxwellian 분포함수 f_0 에 따라 구해 야하므로 상당한 시간을 요구한다.

수정된 알고리즘은 모사업자들은 실제 분자의 결정, 모델링, 에너지와 초기 속도가 있다고 가정한다. 물론 이 가정은 모든 DSMC 알고리즘의 핵심이다. 단위 시간 Δt 이후, 모사업자에 초기에 Maxwellian 분포함수 f_0를 사용하여 구한 값을 대입시킨다. 이것이 가능한 이유는 분포함수는 항상 동일한 평균치를 가지고 있다고 가정한 것일 뿐이다2,3 그리고 에너지와 모델링의 보존을 위해 수행되는 수정 과정을 통해 정확한 온도를 알 수 있다(에너지와 모델링은 계산과정에서 약간의 변동이 있을 수 있지만, 절전은 항상 일정하다. 따라서 발생한 모사업자는 사라지지 않음으로). 즉, 일단 모사업자를 발생시키지 않고 초기에 구한 모사업자를 사용함으로써 계산시간을 줄이는 알고리즘이다.

2.2 불연속적인 기체표면의 뿔과 해석

불연속적인 기체표면이 생기는 가장 큰 이유는 초기 조건에서 불연속적인 표면을 만드는 것 이다9, 왜냐하면 초기 조건은 원하는대로 줄 수가 있기 때문이다. 만약 두 기체가 접촉하고 있고 각기 다른 밀도와 압력을 가지고 있다면 이 두 기체 표면은 불연속면이 될 것이다. 처음에는

--- shock wave
--- expansion

Fig. 1. picture of decay of discontinuity in gas parameters after a few calculation time
초기 조건에 의해 음적이지 않고 있던 각 기체들 이 시간의 호름(시간 $t = 0$ 에서부터 시작)에 따라 압력과 밀도가 높은 부분(1부분)으로부터 낮은 부분(2부분)으로 기체의 호름이 시작한다. 이 때 초기 조건에 의해 기체가 음속으로 호른다고 가정할 때, Fig. 1의 0을 기준으로 하여 원쪽 영역에서는 펼쳐짐(expansion)이 생기고, 오른쪽 영역에서는 충격파(shock wave)가 발생한다.

본 연구의 초기 조건은 다음과 같다.
- 압력 $P_1 : P_2 = 4 : 1$
- 밀도 $\rho_1 : \rho_2 = 4 : 1$
- 속도 $U_1 : U_2 = 0 : 0$
- 기체상수 $\gamma = 1.4$

정계조건은 외부 정계에 대한 조건이 있으며, x축 경계에 모사입자가 충돌할 경우 거울반사 (mirror reflection) 조건을 사용한다.

2.3 비점성 유체 유동에서의 평판 해석

Fig. 2를 보면, 평판 위와 아래로 초음속유동이 호른다. 이때, 평판 위쪽의 앞부분에 닿은 유동은 평판과 유동의 방향 각 α 만큼 떨어지 후 평방(expansion)을 통과하면서 평판과 수평을 이루며 평판 위를 따라 호른다. 압력은 P_B 까지 감소하는 반면, 마하수는 M_B(Fig. 2에서는 λ_B)까지 상승하게 된다. 평판 위쪽의 뒷부분에서는 앞부분에서 떨어진 각도 α 만큼 반대방향으로 움직여 나가게 되며 이때 경사 충격파(obiique shock)가 발생한다. 평판 아래쪽 앞부분으로 호른 유동도 방향 각 α 만큼 떨어지면서 경사 충격파(obiique shock)을 통과한 후 평판을 따라 호른다. 이때 평판 아래쪽의 압력은 P_H / P_1 만큼 증가하고 이에 따라 M_H(Fig. 2에서는 λ_B)까지 감소하게 된다. 평판 아래쪽 뒷부분의 유동은 방향 각 α만큼 반대방향으로 깨어면서 평창(expansion)을 통과해 나가면서 속도가 증가한다. 따라서 최종적으로 평판 위쪽에서 쌍어나가는 유동의 압력과 아래쪽에서 쌍어나가는 유동의 압력은 동일 ($P_2 = P_3$) 하다. 하지만, 이 두 유동의 속도는 다를 수도 있지만 방향은 동일한 방향으로 쌍어 나간다.

평판은 가장 간단한 초음속 에어포일(airfoil)이다. 따라서 만약 평판이 충분히 길고 방향각이 크지 않다면, 충분히 이론적으로 얻은 결과와 근사한 압력계수와 양력계수를 구할 수 있다.

본 연구에서 실험 결과와 비교할 이론은 뉴턴 방법을 사용하여 얻은 압력계수 C_P와 양력계수 C_x를 사용한다. 참고로 뉴턴 방법의 압력계수 C_P와 양력계수 C_x는

\begin{align}
C_P &= 4a/\sqrt{M^2 - 1} \\
C_x &= 4a^2/\sqrt{M^2 - 1}
\end{align}

식 (6)과 (7)에 의해 구할 수 있다.

2.5 결과 및 분석

2.5.1 불연속적인 기체표면 해석

Fig. 3은 불연속적인 표면의 분포에서 압력과 밀도의 분포를 나타낸 그래프이다. 서로 다른 압력과 밀도로 압축되어있는 두 기체가 접하.
고 있다. 기체들이 이동을 시작하고, 약간의 시간이 호른 후(압력과 밀도가 높은 기체 쪽이 다른 기체 쪽의 끝에 아직 도달하지 않은 시간), x 축에서의 압력과 밀도의 분포를 직접조사 모델로 방법으로 얻은 결과와 FDM(Roe의 기법)으로 얻은 결과를 서로 비교한 것이다. 실험에 사용된 총 모시입자의 수는 40,000개이며, 계산영역 (x축은 10cm)은 100개의 cell로 나누었다. 1번 cell부터 50번 cell까지는 51번 cell부터 100번 cell까지보다 4배 높은 압력과 밀도를 주었으므로 기체의 호름은 오른쪽으로 이동되고 있음을 Fig. 3을 통해서 알 수 있다. 그리고 Fig. 3에서 ◆는 100개의 cell 각각의 압력과 밀도를 나타낸다.

Fig. 4는 속도의 분포를 나타낸 것이다. 모든 조건은 Fig. 3과 동일하다. Fig. 3에서 보여주는 것처럼, 가운데 부분이 높게 하고 시작하면서 속도가 증가하고 있음을 알 수 있다.

본 연구에서는 1차원적인 해석만을 수행하였으며, 직접조사 모델로 방법은 서론에서도 언급했듯이 1차수의 정확도를 가지고 있다. 반면에 Roe의 기법과 같은 FDM은 더 높은 차수의 정확도(보통 2차수 혹은 3차수의 정확도)를 가지고 있다. 하지만 최종 결과는 거의 일치함을 볼 수 있다.

2.5.2 비점성 유체유동에서의 평판해석

Fig. 5는 얇은 평판(1cm) 주위를 호르는 초음속 유동의 밀도를 나타낸 것이다. 조건은 방향각 15도, 마하수 1.5로 하였고 평판주위를 호르는 유체는 비점성으로 가정하였다. 계산에 사용된 셀은 가로 90개와 세로 90개(2cm x 4cm), 그래서 총 8100개의 셀을 사용하였고 각각의 셀 내의 밀도의 합이 원위의 Fig. 5에 나타나 있다. 예상한 것과 같이 밀도가 높은 평판의 아랫부분은 전하게,윗부분은 연하게 표시되어 있다.

Fig. 6은 마하수를 1.5로 고정시켜놓고 방향각을 0도에서 20도까지 변화시키면서 얻은 양력계수 C_y와 향량계수 C_x를 앞에서 언급한 뉴턴 방점을 사용하여 구한 값과 비교한 것이다. 그림에서 점으로 나타난 것이 실제로 프로그램을 돌려서 구한 값이고 선으로 나타낸 것이 뉴턴 방법으로 구한 것이다.

Fig. 7은 방향각을 15도로 고정시켜놓고 마하수를 0.2 ~ 5까지 변화시키면서 얻은 양력계수 C_y와 향량계수 C_x를 뉴턴 방법으로 구한 값과 비교한 것이다. 마하수가 낮은 경우에는 약간 정
확도가 떨어짐을 알 수 있으며, 마하수가 높아지는 경우에는 거의 일치함을 알 수 있다. 하지만 극초음속(마하수 5 이상의 경우)의 경우, 실험 결과는 마하수가 낮은 경우와 마찬가지로 정확도가 떨어졌다.

III. 결 론

직접모사 모델을로 방법은 빅토기체 유동을 해석하는데 주로 적용된다. 하지만 본 연구에서는 직접모사 모델로 방법을 비점성 유동 해석에 적용해 보았다. 불연속적인 기체의 불가ほしい에서는 FDM(Roe의 방법)으로 얻은 결과와 비교하여 거의 일치했음을 증명하였고, 비점성 유체유동에서의 평판 해석에서는 뉴턴 방법으로 구한 압력계수와 향력계수 값들과 거의 일치함을 보였다. 따라서, 결과의 정확도면에서 보면 비점성 유동을 해석하는 데에도 수정된 직접모사 모델을로 방법이 타당함을 알 수 있었다. 또, 기존의 알고리즘으로 구한 값과 수정된 알고리즘으로 구한 값을 그래프로 나타내었을 때 전혀 차이가 없으므로 수정된 알고리즘으로 구한 그래프만을 사용했으며, 특히 계산시간도 기존의 알고리즘으로 실험을 했을 경우와 비교했을 때, 수정된 알고리즘으로는 약 2/3 정도의 계산시간(동일한 컴퓨터 사양으로 계산했을 경우)으로 가능했으므로 비점성 유동의 해석에 수정된 알고리즘을 적용하는 것도 타당함을 확인하였다.

참고문헌