참재첩을 이용한 부영양호의 수질개선

Water Quality Improvement with the Application of Filter-feeding Bivalve (Corbicula leana Prime) in a Eutrophic Lake

  • 김호섭 (국립환경연구원 수질오염총량과) ;
  • 박정환 (건국대학교 환경과학과) ;
  • 공동수 (국립환경연구원 수질오염총량과) ;
  • 황순진 (건국대학교 환경과학과)
  • Kim, Ho-Sub (Watershed Management Research Division, National Institute of Environmental Research Complex) ;
  • Park, Jung-Hwan (Department of Environmental Science, Konkuk University) ;
  • Kong, Dong-Soo (Watershed Management Research Division, National Institute of Environmental Research Complex) ;
  • Hwang, Soon-Jin (Department of Environmental Science, Konkuk University)
  • 발행 : 2004.09.30

초록

본 연구에서는 여과섭식성 이매패류인 참재첩(Corbicula leana)의 섭식에 따른 수체내 영양염 및 입자성 물질의 변화를 mesocosm (width ${\times}$ length ${\times}$ depth: 3 m ${\times}$ 3 m ${\times}$ 0.5 m)에서 분석함으로써 수질개선기법으로의 적용가능성을 검토하였다. 짧은 기간 동안의 mesocosm실험은 패류의 교체를 통한 연속적인 두 단계로 수행되었다. 첫 번째 단계는 패류 투입 이후 8일 동안이며 패류의 교체 이후의 진행된 8일 동안의 실험은 두 번째 단계로 구분된다. 이러한 연속적인 실험을 통해 조개의 섭식에 따른 수질변화를 좀더 명확하게 비교할 수 있었다. 재첩 투입 직후 높은 패사율을 보였으나 처리구의 교체가 있던 8일의 재첩의 패사율은 4 ind $day^{-1}$ 이하로 안정된 상태를 유지하였다. 엽록소 a 농도는 투입 직후의 수체 내 농도와 비교해 패류의 교체전과 후에 각각 71%, 88% 감소하였고 부유물질은 70%, 77% 감소하였으며, 여과율은 평균 0.46과 0.61 mL AFDW $mg^{-1}$ $hr^{-1}$이였다. 폐사율이 높았던 시기에 수중 내 암모니아성 질소와 용존총인이 증가하였다. 폐사율과 암모니아 농도는 양의 상관성을 보인 반면에 (r = 0.95, P<0.001), 용존총인의 농도는 폐사율과 음의 상관성을 나타냈다 (r = 0.94, P<0.001). 패류의 폐사율이 낮았던 교체 이후에도 암모니아의 농도는 증가하였고 실험 초기 대조구와 비교해 높은 농도를 유지하였다(P= 0.042, ANOVA). 반면에, 용존 총인은 비록 농도가 증가하였으나 초기 대조구와 비교해 큰 차이는 없었다(P= 0.509, ANOVA). 이러한 결과들은 만약 패류가 투입 초기에 새로운 서식지에 성공적으로 정착한다면 부영양 호수의 수질을 효과적으로 개선할 수 있는 방법이 될 수 있음을 시사한다.

This study was conducted to test a possibility of water quality improvement using a filter-feeding bivalve (Corbicula leana). In mesocosm scale (width ${\times}$ length ${\times}$ depth: 3 m ${\times}$ 3 m ${\times}$ 0.5 m), we investigated the changes of dissolved nutrient and particulate matter including both abiotic and biotic seston. Short term (16 days) mesocosm experiment was conducted in two stages: the first stage for 8 days and consecutive 8 days of the second stage. Both treatment and control mesocosm were switched over by translocating mussels from the treatment mesocosm to the control, at 8th days since the start of the experiment. This design made it possible to compare mussel effect on the water quality change more clearly. The high mortality of mussel was observed in the treatment of the first stage, but it decreased rapidly and stabilized on the 8th day to less than< 4 ind $day^{-1}$. Chl. a concentration in the treatment mesocosm of the first and second stage decreased to 71 and 88% of initial concentration, respectively, and suspended solids decreased to 70 and 77%. At those times, average filtering rate were 0.46 and 0.61 mL AFDW $mg^{-1}$ $hr^{-1}$, respectively. Both $NH_3-N$ and dissolved total phosphorus (DTP) concentrations increased with the mussel mortality. $NH_3-N$ concentration was positively correlated with the mussel mortality, while DTP concentration showed negative correlation with it. After translocating mussel from the treatment to the control, $NH_3-N$ concentration significantly increased compared with that of initial control. Although DTP concentration also increased, there was no significant difference relative to that of initial control. These results suggest that application of this filter-feeding bivalve in a eutrophic reservoir could be a potential tool to improve water quality if mussels could acclimatize successfully in early stage of the introduction.

키워드

참고문헌

  1. 김호섭, 황순진, 고재만. 2003. 도심의 얕은 인공호인 일감호의 수질변화특성과 퇴적환경의 평가. 한국육수학회지 36: 161-171
  2. 황순진, 김호섭, 최광현, 박정환. 2002. 국내 담수산 조개의 여과섭식능 비교와 섭식활동이 호수 수질에 미치는 영향. 한국육수학회지 35: 92-102
  3. APHA. 1995. Standards methods for the examination of water and wasterwater (19thEd.). American Public Health Association, Washington, D.C
  4. Arnott, D.L. and M.J. Vanni. 1996. Nitrogen and phosphorus recycling by the zebra mussel (Dreissena polymorpha) in the western basin of Lake Erie. Can. J. Fish. Aquat. Sci. 53: 646-659
  5. Belanger, S.E. 1991. The Effect of Dissolved Oxygen, Sediment, and Sewage Treatment Plant Discharges upon Growth, Survival and Density of Asiatic Clams. Hydrobiologia. 281: 113-126
  6. Belanger, S.E., J.L. Farris, D.S. Cherry and J. Cairns. 1985. Sediment preference of the freshwater Asiatic clam, Corbicula fluminea. The Nautilus. 99: 66-73
  7. Buddensiek, E.H., H. Engel, S. Fleischauer-Rossing and K. Wachtler. 1993. Studies on the chemistry of interstitial water taken from defined horizons in the fine sediments of bivalve habitats in several northern German Lowland Waters II: Microhabitats of margaritifera margaritifera L., Unio Crassus (Philipsson) and Unio tumidus Philipsson. Arch. Hydrobiol. 127: 151-166
  8. Cohen R.R.H., P.V. Dresler, E.J.P. Phillips and R.L. Cory. 1984. The effect of the Asiatic clam, Corbicula fluminea, on phytoplankton of the Potomac River, Maryland. Limnol. and Oceanor. 29: 170-180
  9. Cotner, J.B., W.S. Gardner, J.R. Johnson, R.H. Sada, J.F. Cavaletto, and R.T. Heath, 1995. Effects of zebra mussels (Dreissena polymorpha) on bacterioplankton: evidence for both size-selective consumption and growth stimulation. J. Great Lakes Res. 21: 517-528
  10. Dame, R.F. 1996. Ecology of marine buvalves: An ecosystem approach. CRC Press, Boca Raton. p. 254
  11. Dame, R.F., R. Zingmark and D. Nelson. 1985. Filter feeding coupling between the estuarine water column and benthic subsystems. pp. 521-526. In: Estuarine Perspectives (V.S. Kennedy ed.) Academic Press, New York
  12. Davis, W.R., A.D. Christian, and D.J. Berg. 2000. Seasonal nitrogen and phosphorus cycling by three unionid bivalves (Unionidae: Bivalvia) in headwater streams. pp.1-10. In: Freshwater Mollusk Symposium Proceeding. (R.S. Tankersley, D.O. Warmolts, G.T. Watters, B.J. Armitage, P.D. Johnson and R.S. Butler eds.) Ohio Biological Survey, Columbus, OH, USA
  13. Doherty, F.G., J.L. Farris, D.S. Cherry and J. Cairns, 1986. Control of the freshwater fouling bivalve, Corbicula fluminea by halogenation. Arch. Envir. Contam. Toxicol. 15: 535-542
  14. Dorgelo, J. and J.W. Smeenk, 1988. Contribution to the ecophysiology of Dreissena polymorpha (Pallas) (Mollusca: Bivalvia): Growth, filtration rate and respiration. Verh. Internat. Verein. Limnol. 23: 2202-2208
  15. Fahnenstiel, G.L., G.A. Lang, T.F. Nalepa and T.H. Johengen. 1995. Effects of zebra mussel (Dreissena polymorpha) colonization on water quality parameters in Saginaw Bay, Lake Huron. J. Great Lakes Res. 21: 435-448
  16. Fanslow, D.L., T.F. Nalepa and G.A. Lang. 1995. Filtration rates of the zebra mussel (Dreissena polymorpha) on natural seston from Saginaw Bay, Lake Huron. J. Great Lakes. Res. 21: 489-500
  17. Foster-Smith, R.L. 1975. The effect of concentration of suspension on the filtration rate and pseudofaecal production for Mytilus edulis, L., Cerastoderma edule (L.), and Venerupis pullastra. J. Experimental Mar. Biol. Ecol. 17: 1-22
  18. Gardner, W.S., J.F. Cavaletto, T.H. Johengen, J.R., Johnson, R.T. Heath and J.B. Cotner. 1995. Effects of the zebra mussel, Dreissena polymorpha, on community nitrogen dynamics in Saginaw Bay, Lake Huron. J. Great Lakes Res. 21: 529-544
  19. Gleason, E. 1984. The freshwater clam Corbicula fluminea in California. Inland Fish. Inform. Leaflet 37, State of California, The Resources Agency, Department of Fish and Game: 1-8
  20. Heath, R.T., G.L. Fahnenstiel, W.S. Gardner, J.F. Cavaletto and S.-J. Hwang, 1995. Ecosystem-level effects of zebra mussel (Dreissena polymorpha): An enclosure experiment in Saginaw Bay, Lake Huron. J. Great Lakes Res. 21: 501-516
  21. Hecky, R.E. and P. Kilham. 1988. Nutrient limitation of phytoplankton in freshwater and marine environments: A review of recent evidence on the effects of enrichment. Limnol. Oceanogr. 33: 796-822
  22. Holland, R.E. 1993. Changes in plankton diatoms and water transparency in Hatchery Bay, Bass Island area, western Lake Erie since the establishment of the zebra mussel. J. Great Lakes Res. 19: 617-624
  23. Horne, F.R. and S. Mclntosh. 1979. Factors inf luencing distribution of mussel in the Blanco River of Central Texas. The Nautilus 94: 120-133
  24. Hwang, S.-J. 1996. Effects of zebra mussel(Dreissena polymorpha): on phytoplankton and bacterioplankton : Evidence for size-selective grazing. Kor. J. Limnol. 29: 363-378
  25. Hwang, S.-J., H.-S. Kim, J.-K. Shin, J.-M. Oh and D.-S. Kong. 2004. Grazing effects of a freshwater bivalve (Corbicula leana PRIME) and large zooplankton on phytoplankton communities in two Korean lakes. Hydrobiologia. 515: 161-179
  26. Hwang, S.-J., H.-S. Kim, and J.-K. Shin. 2001. Filter-Feeding Effects of a freshwater Bivalve (Corbicula leana PRIME) on phytoplankton. Kor. J. Limnol. 34: 298-309
  27. Jack, J.D. and J.H. Thorp. 2000. Effects of the benthos suspension feeder Dressena polymorpha on zooplankton on a large river. Freshwater Biol. 44: 569-579
  28. James M.R. 1987. Ecology of the freshwater mussel Hydridella mensiesi (Gray) in a small oligotrophic lake. Arch. Hydrobiol. 108: 337-348
  29. Johengen, T.H., T.F. Nalepa, G.L. Fahnenstiel and G. Goudy. 1995. Nutrient Canges in Saginaw Bay, Lake Huron, After the Establishment of the Zebra Mussel (Dreissena polymorpha). J. Great Lakes Res. 21: 449-464
  30. Kraemer, L.R., 1979. Corbicula (Bivalvia: Sphaeriaceae)vs. indigenous mussels(Bivalvia: Unionacea) in U.S. rivers: a hard case for interspecific competition? Am. Zool. 19: 1085-1096
  31. Lavrentyev, P.J., W.S. Gardner, J.F. Cavaletto and C. Beaver, 1995, Effect of zebra mussel on protozoa and phytoplankton from Saginaw Bay, Lake Huron. J. Great Lakes Res. 21: 545-557
  32. Leach, J.H. 1993. Impacts of the zebra mussel (Dreissena polymorpha) on water quality and fish spawning reefs in western Lake Erie. pp. 381-397. In : Zebra Mussels: Biology, Impact, and Control (T.F. Nalepa and D.W. Schloesser eds.). Lewis Publishers, Boca Raton, FL
  33. Loo, L.-O. and R. Rosenberg, 1989, Bivalve suspensionfeeding dynamics and benthic-pelagic coupling in a eutrophicated marine bay. Journal of Experimental Marine Biology and Ecology. 130: 253-276
  34. Marker, A.F.H. 1972. The use of acetone and methanol in the estimation of chlorophyll in the presence of phaeophytin. Freshwater Biol. 2: 361-385
  35. Marker, A.F.H., E.A. Nusch, I. Rai and B. Riemann. 1980. The measurement of photosynthetic pigments in freshwaters and standardization of methods: Conclusions and recommendations. Arch. Hydrobiol. Beih. 14: 91-106
  36. McMahon, F. 1983. The ecology of an invasive pest bivalve, Corbicula. In : The Mollusca, Volume 6, Academic Press
  37. Morton, B.S. 1979. Freshwater fouling bivalves. In J.C. Britton (ed.), Proc. First Internat. Corbicula Symp. Texas Christian University, Fort Worth, Texas: 1-14
  38. Nicholls, K.H. and G.J. Hopkins, 1993, Recent changes in Lake Erie (north shore) phytoplankton: cumulativeimpacts of phosphorus loading reductions and the zebra mussel introduction. J. Great Lakes Res. 19: 637-647
  39. Owen, D.A. and L.B. Cahoon. 1991. An investigation into the use of exotic and native bivalves as indicators of eutrophicationinduced hypoxia. J. Elisha Mitchell Scientific Soc. 107: 71-74
  40. Quigley, M.A., W.S. Gardner and W.M. Gordon. 1993. Metabolism of the zebra mussel (Dreissena polymorpha) in Lake St. Clair of the Great Lakes. pp. 295-306. In: Zebra Mussels: Biology, Impacts, and Contro. (Y.F.Nalepa and D.W. Schloesser eds.). Lewis Publishers/CRC Press, Boca Raton, FL
  41. Reeders, H.H. and A. Bij de Vaate. 1990. Zebra mussel (Dreissena polymorpha): a new perspective for water quality management. Hydrobiologia. 200/201: 437-450
  42. Reeders, H.H. and A. Bij de Vaate. 1992. Bioprocessing of polluted suspended matter from the water column by the zebra mussel (Dreissena polymorpha Pallas). Hydrobiologia. 239: 53-63
  43. Reeders, H.H., A. Bij de Vaate and F.J. Slim, F.J. 1989. The filtration rate of Dreissena polymorpha (Bivalvia) in three Dutch lakes with reference to biological water quality management. Freshwater Biol. 22: 133-141
  44. Scheller, J.L. 1997. The effect of dieoffs of asiantic clams (Corbicula fluminea) on native freshwater mussel (Unionidae). Thesis for Ph.D. Virginia Polytechnic institute and State University, Blacksburg, VA. pp. 34-38
  45. Sickel, J.B. 1977. Population dynamics of Corbicula in the Altamaha River, Georgia. pp. 69-80. In: Proceedings First International Corbicula Dymposium (J. C. Britton ed.). Texas Christian University, Fort Worth, Texas
  46. Sickel, J.B. 1986. Corbicula population mortalities: Factors influencing population control. Am. Malacol. Bull., Special edition 2: 89-94
  47. Smit, H.A., E.H. Bij de Vaate, van Nes and R.H. Noordhuis. 1993. Colonization, ecology and positive aspects of zebra mussels (Dreissena polymorpha) in The Netherlands. pp. 55-77. In : Zebra Mussels: Biology, Impact, and Control (T.F. Nalepa and D.W. Schloesser eds.). Lewis Publishers, Boca Raton, FL
  48. Soto, D. and G. Mena. 1999. Filter feeding by the freshwater mussel, Diplodon chilensis, as a biocontrol of salmon farming eutrophication. Aquaculture 171: 65-81
  49. Sprung, M. and U. Rose. 1988. Influence of food size and food quality of the feeding of the mussel Dreissena polymorpha. Oecologia. 77: 526-532
  50. Stanczykowska, A. 1975. Ecosystem of the Mikolajskie Lake. Regularities of the Dressena polymorpha Pall (Bivalvia) occurrence and its function in the lake. Pol. Arch. Hydrobiol. 22: 73-78
  51. Vaughn, C.C. and C.C. Hakenkamp. 2001. The functional role of burrowing bivalves in freshwater ecosystems. Freshwater Biol. 46: 1431-1446
  52. Walz, N. 1978. The energy balance of the freshwater mussel Dreissena polymorpha PALLAS in laboratory experiments and in Lake Constance: I. Pattern of activity, feeding, and assimilation efficiency. Arch. Hydrobiol. 82: 482-499
  53. Welker M. and N. Walz. 1998. Can mussels control the plankton in rivers?-A planktonological approach applying a Lagrangian sampling strategy. Limnol. Oceanogr. 43: 753-762
  54. Winter, J.E. 1973. The filtration rate of Mytilus edulis and its dependence of on algal concentration, measured by a continuous automatic apparatus. Mar. Biol. 22: 317-328
  55. Yamamuro, M and I. Koike. 1993. Nitrogen metabolism of the filter-feeding bivalve Corbicula japonica and its significance in primary production of a brackish lake in Japan. Limnol. Oceanogr. 38: 997-1007