DOI QR코드

DOI QR Code

Characterization of Tomato spotted wilt virus from Paprika in Korea

  • Choi, Gug-Seoun (Dept. of Horticultural Environment, National Horticultural Research Institute, Rural Development Administration) ;
  • Kim, Jeong-Soo (Dept. of Horticultural Environment, National Horticultural Research Institute, Rural Development Administration) ;
  • Choi, Jang-Kyung (Division of Biological Environment, College of Agriculture and Life Science, Kangwon National University) ;
  • Kim, Jae-Hyun (Dept. of Horticultural Environment, National Horticultural Research Institute, Rural Development Administration)
  • Published : 2004.12.31

Abstract

A Tomato spotted wilt virus (TSWV-KP) was isolated from Paprika (Capsicum annuum var. grossum) showing necrosis spot on the leaves and malformation of the fruit in Yesan, Korea. The virus infected Chenopodium amaranticolor, C. quinoa, Petunia hybrida, Nicotiana glutunosa, Gomphrena globosa, and Physalis floridana. Ten plants including tomato were observed to have systemic TWSV-KP infection. The virus produced necrosis or necrotic ring spots on the inoculated leaves and mosaic, vein necrosis or death on the upper leaves of Datura stramonium, N. clevarandii, N. rustica, and N.tabacum cvs. Thin sections of the infected leaf tissue contained spherical to oval particles, a characteristic of a Tospovirus. The virion contained three molecules of genomic RNAs, which were approximately 9.0, 4.9 and 3.0 kb. The nucleocapsid (N) protein of the purified virion migrated as a single band with molecular weight of about 29 kDa in SDS-PAGE. The N gene of TSWV-KP showed 96.5-97.2% and 97.7-98.5% identities to the three different TSWV isolates of Genbank Database at the nucleotide and amino acid, respectively.

Keywords

References

  1. Brittlebank, C. C. 1919. Tomato diseases. J. Agricul. 17:231-235. Chatzivassilious, E., Livieratos I. C., Katis, N., Avgelis, A. and Lykouressis, D. 1996. Occurrence of tomatospotted wilt virus in vegetable and ornamentals in Greece. Acta Hort. 431 :44-50
  2. Doi, M., Zen, S., Okuda, M., nakamura, H., Kato, K. and Hanada, K. 2003. Leaf necrotic disease of lisianthus (Eustoma grandiflorum) caused by Iris yellow spot virus. Jpn. J Phytopathol. 69:181-188 https://doi.org/10.3186/jjphytopath.69.181
  3. Goldbach, R. and Peters, D. 1994. Possible causes of the emergence of tospovirus diseases. Sem. Virol. 5: 113-120 https://doi.org/10.1006/smvy.1994.1012
  4. de Haan, P., Wangemakers, L., Peter, D. and Goldbach, R. 1990. The S RNA segment of tomato spotted wilt virus has an ambisense character. J Gen. Virol. 71: 100I-I 007 https://doi.org/10.1099/0022-1317-71-5-1001
  5. de Haan, P., Kormelink, R., Resende, R. de. O., van Poelwijk, E, Peters, D. and Goldbach, R. 1991. Tomato spotted wilt virus L RNA encodes a putative RNA polymerase. J Gen. Virol. 72:2207-2216 https://doi.org/10.1099/0022-1317-72-9-2207
  6. de Haan, P., de Avila, A. C., Kormelink, R., Westerbroek, A., Gielen,J. J., Peters, D. and Goldbach, R. 1992. The nucleotide sequence of the S RNA of Impatiens necrotic spot virus, a novel tospovirus. FEBS Lett. 306:27-32 https://doi.org/10.1016/0014-5793(92)80830-A
  7. Kato, K. and Hanada, K. 2000. Charaterization ofthe S RNA segment of melon yellow spot virus. Jpn. J Phytopathol. 66:252254 https://doi.org/10.3186/jjphytopath.66.252
  8. Kato, K. and Hanada, K. 2000. A necrotic disease of chrysanthemum caused by tomato spotted wilt virus in Japan. Ho Kyushu Byogaichu Kenkyukai 46:61-65 https://doi.org/10.4241/kyubyochu.46.61
  9. Kormelink, R., de Haan, P., Meurs, C., Peters, D. and Goldbach, R. 1992. The nucleotide sequence of the M RNA segment of tomato spotted wilt virus, a bunyavirus with two ambisense RNA segments. J Gen. Virol. 73:2795-2804 https://doi.org/10.1099/0022-1317-73-11-2795
  10. Kormelink, R., Storm, M., van Lent, J., Peters, D. and Goldbach, R. 1994. Expression and subcellular location of the NSm protein of tomato spotted wilt virus TSWV, a putative movement protein. Virology 200:56-65 https://doi.org/10.1006/viro.1994.1162
  11. Ie, T. S. 1971. Electronmicroscopy of developmental stage of tomato spotted wilt virus in plant cell. Virology 2:468-479
  12. Morris, T. J. and Dodds, J. A. 1979. Isolation and analysis ofdouble- stranded RNA from virus-infected plant and fungal tissue. Phytopathology 69:854-858 https://doi.org/10.1094/Phyto-69-854
  13. van Regenmortel, M. H. V., Fauquet, C. M., Bishop, D. H. L., Carstens, E. B. Estes, M. K., Lemon, S. M., Manioff, J., Mayo, M. A. McGeich, D. J., Pringle, C. R. and Wickner, R. B. 2000. Virus Taxonomy: Classification and Nomenclature of Virus. Seventh Report ofthe International Committee on Taxonomy of Viruses San Diego: Academic Press, NY
  14. Satyanarayana, T., Mitchell, S. E., Reddy, D. V., Brown, S., Kresovich, S.,Jarret, R., Naidu, R. A. and Demski, J. W. 1996. Peanut bud necrosis tospovirus S RNA: complete nucleotide sequence, genome organization ,and homology to other tospoviruses. Arch. Virol. 141 :85-98 https://doi.org/10.1007/BF01718590
  15. Tsuda, S., Hanada, K., Hidaka, S. Minobe, Y., Kameya-Iwaki, M. and Tomaru, K: 1992. The presence of three pairs of possibly complementary RNA species in isolated nucleocapsid material of tomato spotted wilt virus. Ann. Phytopath. Soc. Jpn. 58:393-40 https://doi.org/10.3186/jjphytopath.58.393
  16. Tsuda, S., Fujisawa, I., Nakano, M., Hanada, K., Kmeya-Iwaki, M., Hidaka, S. and Tomaru, K. 1994. Nucleotide sequence of N protein and 3 non-coding region in S RNA of tomato spotted wilt tospovirus ordinary strain in Japan. Ann. Phytopathol. Soc. Jpn. 60:375 (Abst.)
  17. Tsuda, S., Kameya-Iwaki, M., Hanada, K., Tomaru, K. and Minobe, Y. 1996. Grouping of five Tospovirus isolates from Japan. Acta Hort. 431: 176-185
  18. Wijkamp, I., van Lent, J., Koremelink, R., Goldbach, R. and Peters, D. 1993. Multiplication oftomato spotted wilt virus in its insect vector, Frankliniella occidentalis. J Gen. Virol. 74:341-349 https://doi.org/10.1099/0022-1317-74-3-341
  19. Yeh, S. D., Sun, I. J., Ho, H. M. and Chang, T. F. 1996. Molecular cloning and nucleotide sequence analysis of the S RNA of watermelon silver mottle virus. Acta Hort. 431 :244-260

Cited by

  1. Symptom and Resistance of Cultivated and Wild Capsicum Accessions to Tomato Spotted Wilt Virus vol.17, pp.1, 2011, https://doi.org/10.5423/RPD.2011.17.1.059
  2. First Report of Tomato spotted wilt virus in Eustoma grandiflorum in Korea vol.101, pp.3, 2017, https://doi.org/10.1094/PDIS-10-16-1514-PDN
  3. Outbreak of Cucumber mosaic virus and Tomato spotted wilt virus on Bell Pepper Grown in Jeonnam Province in Korea vol.24, pp.1, 2008, https://doi.org/10.5423/PPJ.2008.24.1.093
  4. Estimation of the effect of Tomato spotted wilt virus (TSWV) infection on some yield components of tomato vol.40, pp.1, 2012, https://doi.org/10.1007/s12600-011-0192-2
  5. The complete genome sequence of pepper severe mosaic virus and comparison with other potyviruses vol.151, pp.10, 2006, https://doi.org/10.1007/s00705-006-0776-1
  6. Molecular evidence supporting the confirmation of Maracuja mosaic virus as a species of the genus Tobamovirus and production of an infectious cDNA transcript vol.151, pp.12, 2006, https://doi.org/10.1007/s00705-006-0823-y
  7. Characterization ofFusarium oxysporumIsolated from Paprika in Korea vol.35, pp.2, 2007, https://doi.org/10.4489/MYCO.2007.35.2.091
  8. Pattern of the Occurrence of Tomato spotted wilt virus in Jeonnam Province vol.19, pp.4, 2013, https://doi.org/10.5423/RPD.2013.19.4.273
  9. Occurrence and Symptoms of Tomato spotted wilt virus on Egg Plant, Whole Radish and Sugar Loaf in Korea vol.16, pp.3, 2010, https://doi.org/10.5423/RPD.2010.16.3.232
  10. Complete genome sequence supports Bell pepper mottle virus as a species of the genus Tobamovirus vol.152, pp.7, 2007, https://doi.org/10.1007/s00705-007-0950-0
  11. Complete genome sequences of three tomato spotted wilt virus isolates from tomato and pepper plants in Korea and their phylogenetic relationship to other TSWV isolates vol.156, pp.4, 2011, https://doi.org/10.1007/s00705-011-0935-x
  12. Development of Rapid Immune-gold Strip Kit for On-Site Diagnosis of Tomato spotted wilt virus vol.20, pp.1, 2014, https://doi.org/10.5423/RPD.2014.20.1.015
  13. Identification of Leonurus sibiricus as a Weed Reservoir for Three Pepper-Infecting Viruses vol.32, pp.1, 2016, https://doi.org/10.5423/PPJ.NT.07.2015.0138
  14. First Report of a Resistance-breaking Isolate of Tomato spotted wilt virus Infecting Sweet Pepper Harboring the Tsw Gene in Argentina vol.99, pp.12, 2015, https://doi.org/10.1094/PDIS-02-15-0207-PDN
  15. Tomato spotted wilt virus Isolates Giving Different Infection in Commercial Capsicum annuum Cultivars vol.28, pp.1, 2012, https://doi.org/10.5423/PPJ.NT.09.2011.0169
  16. First Report of Tomato spotted wilt virus in Solanum tuberosum in Korea vol.99, pp.11, 2015, https://doi.org/10.1094/PDIS-01-15-0065-PDN
  17. Characterization ofSclerotinia sclerotiorumIsolated from Paprika vol.34, pp.3, 2006, https://doi.org/10.4489/MYCO.2006.34.3.154
  18. Phylogenetic analysis of Tomato spotted wilt virus (TSWV) NSs protein demonstrates the isolated emergence of resistance-breaking strains in pepper vol.50, pp.1, 2015, https://doi.org/10.1007/s11262-014-1131-3
  19. in Korea vol.102, pp.8, 2018, https://doi.org/10.1094/PDIS-10-17-1588-PDN
  20. Monitoring Occurrence Status of Thrips Populations on Field-Cultivated Pepper at Major Cultivated Region in West Coast, Korea vol.36, pp.4, 2018, https://doi.org/10.11626/KJEB.2018.36.4.544