Study on Variation of Local Atmospheric Circulation Due to Road Development in Mountain Area

산악지역 도로건설에 따른 국지 대기순환의 변화에 관한 연구

  • Hwang, Soo-Jin (Department of Earth Science, Pusan National University) ;
  • Seo, Kwang-Soo (Department of Earth Science, Pusan National University) ;
  • Lee, Soon-Hwan (Center for Asia Monsoon and Climate Environment Research, Chosun University)
  • 황수진 (부산대학교 지구과학교육과) ;
  • 서광수 (부산대학교 지구과학교육과) ;
  • 이순환 (조선대학교 아시아몬순 기후환경연구센터)
  • Published : 2004.02.28

Abstract

In order to clarify the efficiency of ground level change in Ice-valley on atmospheric circulation, numerical experiment was carried out. The circulations over the slope in North and South are different due to the topography and short wave radiation in Ice-valley. Therefore the circulations in both side are asymmetric and the asymmetric circulations are kept on at 1800 LST. A small difference of the atmospheric circulations formation is made due to the road construction at night. The reason may be the weakness of sensible heat flux from the road and other factors except that the sensible heat is not a principal factor in road construction. The construction of road is associated with growing of sensible heat from the road surface. For this reason, in case of daytime, ascending wind in north slope is more stronger with the road than that without road. The maximum wind speed becomes 4.67 m/s after road construction. And the position of the road is also an important factor in estimation of mesoscale circulation in mountainous area.

얼음골 주변의 지표면 변화에 따른 중규모 대기순환장에 미치는 효과를 보기위하여 수치실험을 실시하였다. 얼음골 남북 경사면에서 발생하는 순환장은 지형과 단파복사에 의한 영향으로 다르게 나타나며, 비대칭을 이룬다. 그리고 이러한 비대칭은 18시까지 계속된다. 야간의 경우, 도로건설에 따른 대기순환장의 차이는 크지 않다. 이것은 주간 단파 복사에 의한 현열플럭스가 감소하며, 현열플럭스외의 다른 요소는 크게 영향을 미치지 않는다는 것을 의미한다. 도로의 건설은 현열플러스의 증가와 관련되고, 주간의 경우, 지형에 의한 곡풍과 결합하여 도로가 없는 경우에 비하여 상승류가 강하여진다. 최대풍속은 4.67 m/s이다. 그리고 이때 도로의 위치역시 주요한 요인으로 작용한다.

Keywords

References

  1. 건설교통부, 2001, 산외-상북간 (능동터널) 국토확장공사환경영향평가서, 859 p
  2. 문승의, 황수진, 1977, 한국 밀양 얼음골의 하계결빙현상에 관하여, 부산대학교사범대학 자연과학연구논문집, 4, 47-57
  3. 이순환, 이화운, 김유근, 2002, 복잡지형에서 도시화에 따른 대기확산에 관한 수치시뮬레이션, 한국대기환경학회지, 18 (2), 67-83
  4. 이주호, 현재민, 송태호, 1994, 복사가열되는 적층원판의 비정상 열전달해석, 대한기계학회지, 18 (1), 156-165
  5. Deardorff, J.W., 1978, Efficient prediction of ground surface temperature and moisture with inclusion of a layer vegetation, Journal of Geophysical Research, 83, 1889-1903 https://doi.org/10.1029/JC083iC04p01889
  6. Kikuchi, Y., Arakawa, S., Kimura, F., Shirasaki, K.,and Nagano, Y., 1983, Numerical study on the effects of on the land and sea breeze circulation in the Kanto district. Journal of Meteorological Society of Japan, 59, 723-738
  7. Kimura, F. and Arakawa S., 1983, A numerical experi-ment of the nocturnal low level jet over Kanto plain, Journal of Meteorological Society of Japan, 61, 848-861
  8. Kimura, F. and Takahashi, S., 1991, the effects of land-use and anthropogenic heating on the surface tempera-ture in the Tokyo metropolotan area: A numericla experiment, Atmospheric Envronment, 25B, 155-164
  9. Kimura, F. and Kuwagata, T., 1993, 'Thermally Induced Wind Passing from Plain to Basin over a Mountain Range', Journal of Applied Meteorology, 23, 1538-1547
  10. Klemp, J.B. and Durran, D.R., 1983, An upper bound-ary conditions permitting internal gravity wave radia-tion in numerical mesoscale models. Monthly Weather Review, 11, 430-440
  11. Kondo, J., Nakamura, T., and Yamazaki, T., 1991, Esti-mation of the solar and downward atmospheric radia-tion. Tenki, 38, 41-48
  12. Kusaka, H., Kimura, F., Hirakuchi, H., and Mizutori, M., 2000, The effects of land-use alteration on the sea breezze and daytime heat island in Tokyo Metropolitan area. Journal of Meteorological Society of Japan, 78, 405-420
  13. Lee, S-H., 1998, Numerical studies on the impacts of topography and heterogeneous surface moisture esti-mated by satellite data on the local circulation. Unpub-lished Ph. D. Dissertation, University of Tsukuba, Tsukba, Japan
  14. Lee, S-H. and Kimura, F., 2001, Comparative studies in the local circulation induced by land-use and by topog-raphy. Boundary Layer Meteorology, 101, 157-182 https://doi.org/10.1023/A:1019219412907
  15. Mellor, G.L. and Yamada, T., 1974, A hierarchy of tur-bulence closure models of planetary boundary layers. Journal of Atmospheric Science, 31, 1791-1805 https://doi.org/10.1175/1520-0469(1974)031<1791:AHOTCM>2.0.CO;2
  16. Orlanski, I., 1976, A simple boundary condition for unbounded hyperbolic flows. Journal of Computatinol Physics, 21, 251-269 https://doi.org/10.1016/0021-9991(76)90023-1
  17. Song, T-H., 1994, Numerical simulation of seasonal convection in an inclined talus, Proceedings of the 10th Int'l Heat Transfer Conference, 2, 455-460
  18. Tanaka, H.L., Nohara, D., and Yokoi, M., 2000, Numerical simulation of wind hole circulation and sum-mertime ice formation at Ice Valley in Korea and Nakayama in Fukushima, Japan. Journal of Meteorolog-ical Society of Japan, 78, 611-630 https://doi.org/10.2151/jmsj1965.78.5_611
  19. Yoshikado, H. and Kondo, H., 1989, Inland penetration of the sea breeze over the suburban area of Tokyo, Boundary Layer Meteorology, 48, 389-407 https://doi.org/10.1007/BF00123061