DOI QR코드

DOI QR Code

Effect of H2 on The Diamond Film Growth Mechanism by HFCVD Method Using CH3OH/H2O

HFCVD법에 의한 H2 다이아몬드 박막 제조에 수소가 미치는 영향

  • Lee Kwon-Jai (Department of Physics, Soongsil University) ;
  • Shin Jae-Soo (Department of Electronic Materials Science, Daejeon University) ;
  • Kwon Ki-Hong (Department of Electronic Materials Science, Daejeon University) ;
  • Lee Min-Soo (Department of Applied Optics and electromagnetics, Hannam University) ;
  • Koh Jae-Gui (Department of Physics, Soongsil University)
  • Published : 2004.12.01

Abstract

The diamond thin films was deposited on Si(100) substrate by Hot Filament Chemical Vapor Deposition (HFCVD) method using supplied the $CH_{3}OH/H_{2}O$ mixtured gas with excess H_{2} gas. The role of hydrogen ion as the growth mechanism of the diamond deposit was examined and compared the $CH_{3}OH/H_{2}O$ with the $CH_4/H_2$. Pressures in the range of $1.1\sim290{\times}10^2$ Pa were applied and using $3.4\sim4.4$ kw power. It was investigated by Scanning Electron Microscopy(SEM) and Raman spectroscopy The H ion was etching the graphite and restrained from $sp^3\;to\;sp^2$. But excess $H_2$ gas was not helped diamond deposit using $CH_{3}OH/H_{2}O$ mixtured gas. It was shown that the role of hydrogen ion of deposited diamond films using $CH_{3}OH/H_{2}O$ was different from $CH_4/H_2$.

Keywords

References

  1. B. V. Deryagin and D. B. Fedoseev, Sci. An., 233, 102 (1975)
  2. M. W. Geis, Proceedings of the IEEE., 79(5), 669 (1991) https://doi.org/10.1109/5.90131
  3. P. W. May. Phil. Trans. R. Soc. Lond. A, 358, 473 (2000) https://doi.org/10.1098/rsta.2000.0542
  4. A. J. Tessmer, L. S. Plano and D. L. Dreifus, Diamond and Related Material, 1, 89 (1992) https://doi.org/10.1016/0925-9635(92)90005-9
  5. K. Tsugawa, K. Kitatani and Hawarda, presented at Diamond, Greece, 2. Semtember 13-18, 17 (1998)
  6. A. Kromka, V. Malcher, J. Janik, V. Dubravcova, A. Satka and I. Cerven, ASDAM 2000, Smolenice Castle, Slovakia, 16-18, 299 (2000) https://doi.org/10.1109/ASDAM.2000.889440
  7. M. Kadlecikava, J. Breza, M. Vesely, V. Luptakova, F. Balon, A. Vojackova, J. Janik and A. Kromka, ASDAM 2002, Smolenice Castle, Slovakia, 14-16, 235 https://doi.org/10.1109/ASDAM.2002.1088462
  8. S. J. Harris, A. M. Weiner and T. A. Perry, Appl. Phys. Lett., 53, 1605 (1988) https://doi.org/10.1063/1.99925
  9. T. Kawato and K. Kanda, Jpn. J. Appl. Phys., 26, 1429 (1987) https://doi.org/10.1143/JJAP.26.1429
  10. M. Frenklach and K. E. Spear, J. Mater. Res., 3, 133 (1988) https://doi.org/10.1557/JMR.1988.0133
  11. J. C. Angus, H. A. Will and W. S. Stanko, J. Appl. phys., 39, 2915 (1968) https://doi.org/10.1063/1.1656693
  12. S. P. Chanhan, J. C. Angus and N. C. Gardnet, J. Appl. phys., 47, 4746 (1976) https://doi.org/10.1063/1.322531
  13. Z. Li. Tolt, L. Heatherly, RE. Clausing and CS. Feigerle, J. Appl. phys., 81(3), 1536 (1997) https://doi.org/10.1063/1.363889
  14. A. R. Badzian, T. Vadzian, R. Roy, R. Messiec and K. E. Spear, Mater. Res. Bull. 23, 531 (1998) https://doi.org/10.1016/0025-5408(88)90161-4
  15. Z. Yu, U. Karlsson and A. Flodstrom, Thin Solid Films, 342(1-2), 74 (1999) https://doi.org/10.1016/S0040-6090(98)01352-2
  16. R. S. Tsang, P. W. May and M. N. R. Ashfold, Diamond and Relat. Mater., 8, 242 (1999) https://doi.org/10.1016/S0925-9635(98)00257-X
  17. P. Badziagm, W. S. Verwoerd, W. P. Ellis and N. R. Greiner, Nature, 343, 244 (1990) https://doi.org/10.1038/343244a0
  18. N. M. Hwang, H. W. Bahng and D. Y. Yoon, Diamond Rela. Mater, 1, 191 (1992) https://doi.org/10.1016/0925-9635(92)90023-H
  19. N. M. Hwang, J. H. Hahn and D. Y. Yoon, J. Cryst. Growth, 160, 87 (1996) https://doi.org/10.1016/0022-0248(95)00548-X
  20. F. G. Celli and J. E. Butler, Appl. Phys. Lett., 54, 1031 (1989) https://doi.org/10.1063/1.100789
  21. S. J. Harris, A. M. Weiner and T. A. perry, Appl. Phys. Lett. 53, 1605 (1988) https://doi.org/10.1063/1.99925
  22. K. C. pandey, phys. Rev., B25, 4338 (1992)
  23. E. S. Machlin, J. Mater. Res., 3, 958 (1988) https://doi.org/10.1557/JMR.1988.0958
  24. M. Flenklach, J. Appl. phys., 65, 5142 (1989) https://doi.org/10.1063/1.343193
  25. O. Matsumato and T. Katagiri, Thin Solid Films, 146, 283 (1987) https://doi.org/10.1016/0040-6090(87)90435-4
  26. K.-J. Lee and J.-G. Koh, Kor. J. of Mater. Res., 11, 1014 (2001)
  27. K.-J. Lee and J.-G. Koh and J.-S. Shin, Kor. J. of Mater. Res., 13, 31 (2003) https://doi.org/10.3740/MRSK.2003.13.1.031
  28. M. Hiramatsu, H. Noda, H. Nagai, M. Shimakura and M. Nawata, Thin solid films, 332(1-2), 136 (1998) https://doi.org/10.1016/S0040-6090(98)01022-0

Cited by

  1. Modeling and simulation of solvent extraction processes for purifying rare earth metals with PC88A vol.30, pp.10, 2013, https://doi.org/10.1007/s11814-013-0135-3