DOI QR코드

DOI QR Code

Characterization of Composite Silicide Obtained from NiCo-Alloy Films

코발트/니켈 합금박막으로부터 형성된 복합실리사이드

  • Song Ohsung (Department of Materials Science and Engineering, The University of Seoul) ;
  • Cheong Seonghwee (Department of Materials Science and Engineering, The University of Seoul) ;
  • Kim Dugjoong (Department of Materials Science and Engineering, The University of Seoul)
  • 송오성 (서울시립대학교 신소재공학과) ;
  • 정성희 (서울시립대학교 신소재공학과) ;
  • 김득중 (서울시립대학교 신소재공학과)
  • Published : 2004.12.01

Abstract

NiCo silicide films have been fabricated from $300{\AA}-thick\;Ni_{1-x}Co_{x}(x=0.1\sim0.9)$ on Si-substrates by varying RTA(rapid thermal annealing) temperatures from $700^{\circ}C\;to\;1100^{\circ}C$ for 40 sec. Sheet resistance, cross-sectional microstructure, and chemical composition evolution were measured by a four point probe, a transmission electron microscope(TEM), and an Auger depth profilemeter, respectively. For silicides of the all composition and temperatures except for $80\%$ of the Ni composition, we observed small sheet resistance of sub- $7\;{\Omega}/sq.,$ which was stable even at $1100^{\circ}C$. We report that our newly proposed NiCo silicides may obtain sub 50 nm-thick films by tunning the nickel composition and silicidation temperature. New NiCo silicides from NiCo-alloys may be more appropriate for sub-0.1${\mu}m$ CMOS process, compared to conventional single phase or stacked composit silicides.

Keywords

References

  1. J. Y. Dai, Z. R. Guo, S. F. Tee, C. L. Tay, Eddie Er and S. Redkar, Appl. Phys. Lett., 78(20), 3091 (2001) https://doi.org/10.1063/1.1372621
  2. J. Prokop, C. E. Zybill and S. Veprek, Thin Solid Films, 359, 39 (2000) https://doi.org/10.1016/S0040-6090(99)00654-9
  3. C. Detavernier, R. L. Van Meirhaeghe, F. Cardon, K. Maex, H. Bender and S. Zhu, J. Appl. Phys., 88(1), 133 (2000) https://doi.org/10.1063/1.373633
  4. Semiconductor Industry Association(SIA), the International technology roadmap for semiconductors, (2001)
  5. J. Lutze, G. Scott and M. Manley, IEEE Electron Device Lett., 21(4), 155 (2000) https://doi.org/10.1109/55.830966
  6. H. Fang, M. C. Oztu, E.G. Seebauer, and D. E. Batchelor, J. Electrochem. Soc., 146(11), 4240 (1999) https://doi.org/10.1149/1.1392621
  7. J. B. Lasky, J. S. Nakos, O. J. Cain and P. J. Geiss, IEEE Trans. Electron Devices, 38(2), 262 (1991) https://doi.org/10.1109/16.69904
  8. R. T. Tung, MRS Symp. Proc., 427, 481 (1996) https://doi.org/10.1557/PROC-427-481
  9. M. L. A. Dass, D. B. Fraser and C. S. Wei, Appl. Phys. Lett., 58(12), 1308 (1991) https://doi.org/10.1063/1.104345
  10. S. P. Muraka, J. Electrochem. Soc., 129, 293 (1982) https://doi.org/10.1149/1.2123815
  11. S. H. Cheong and O. S. Song, Korean J. Mater. Res., 13(2), 88 (2003) https://doi.org/10.3740/MRSK.2003.13.2.088
  12. G. B. Kim and H. K. Baik, Appl. Phys. Lett., 69, 3498 (1996) https://doi.org/10.1063/1.117224
  13. Y. S. Jung, S. H. Cheong and O. S. Song, Korean J. Mater. Res., 14(6), 389 (2004) https://doi.org/10.3740/MRSK.2004.14.6.389
  14. S. Nagasaki and M. Hirabayasi, Binary phase diagrams, Tokyo, Agne Technology Center, p. 111 (2001)
  15. P. B. Zantye, A. Kuman and A. K. Sikder, Mater. Sci. Eng, R45, 89 (2004)