DOI QR코드

DOI QR Code

Evaluation of Bioactivity of Ti-6Al-7Nb Alloys with Various Hydrothermal Treatment Times

열수처리 시간에 따른 Ti-6Al-7Nh 합금의 생체활성 평가

  • Kwon O. S. (School of Advanced Materials Engineering, Chonbuk National University) ;
  • Choi S. K. (Megagen Corp., Daegu Mir Dental Hospital) ;
  • Park K. B. (Megagen Corp., Daegu Mir Dental Hospital) ;
  • Lee M. H. (Dept. of Dental Biomaterials, School of Dentistry, Chonbuk National University) ;
  • Bae T. S. (Dept. of Dental Biomaterials, School of Dentistry, Chonbuk National University) ;
  • Lee O. Y. (School of Advanced Materials Engineering, Chonbuk National University)
  • 권오성 (전북대학교 공과대학 신소재공학부) ;
  • 최석규 ((주) 메가젠, 대구미르치과병원) ;
  • 박광범 ((주) 메가젠, 대구미르치과병원) ;
  • 이민호 (전북대학교 치과대학 치과생체재료학교실) ;
  • 배태성 (전북대학교 치과대학 치과생체재료학교실) ;
  • 이오연 (전북대학교 공과대학 신소재공학부)
  • Published : 2004.12.01

Abstract

This study was to investigate whether the bioactivity of the anodized and hydrothermally treated Ti-6Al-7Nb alloy were affected by the time of hydrothermal treatment. Anodizing was performed at current density 30 $mA/cm^2$ up to 300 V in electrolyte solutions containing $DL-{\alpha}-glycerophosphate$ disodium salt hydrate $(DL-{\alpha}-GP)$ and calcium acetate (CA). Hydrothermal treatment was done at $300^{\circ}C$ for 30 min, 1 hr, 2 hrs, and 4 hrs to produce a thin film layer of hydroxyapatite (HA). The bioactivity was evaluated from HA formation on the surfaces in a Hanks' solution with pH 7.4 at $36.5^{\circ}C$ for 10, 20, and 30 days. Anodic oxide films were porous with pore size of $1\sim4{\mu}m\;and\;3\sim4{\mu}m$ thickness. The anodic oxide films composed with strong anatase peak with presence of rutile peak, and showed the increase in intensity of anatase peak after hydrothermal treatment. It was shown that the intensity of anatase peak increased with increasing the time of hydrothermal treatment but was no difference in rutile peak. The corrosion voltage was the highest in the group of hydrothermal treatment for 2 hrs (Ecorr: -338.6 mV). The bioactivity in Hank's solution was accelerated with increasing the time of hydrothermal treatment.

Keywords

References

  1. B. C. Wang, T. M. Lee, E. Chang and C. Y. Yang, J. Biomed. Mater. Res., 27, 1315 (1993) https://doi.org/10.1002/jbm.820271012
  2. K. Hayashi, T. Inadome, T. Mashima and Y. Sugioka, J. Biomed. Mater. Res., 27, 557 (1993) https://doi.org/10.1002/jbm.820270502
  3. T. Kokubo, F. Mijaji, H. M. Kim and T. Nakamura, J. Am, Ceram, Soc., 79, 1127 (1996) https://doi.org/10.1111/j.1151-2916.1996.tb08561.x
  4. W. Q. Yan, T. Nakamura, M. Kobayashi, H. M. Kim, F. Mijaji, J. Biomed. Mater. Res., 37, 267 (1996) https://doi.org/10.1002/(SICI)1097-4636(199711)37:2<267::AID-JBM17>3.0.CO;2-B
  5. H. W. Chung, K. H. Choi, M. H. Lee and T. S. Bae, J. Korean Res. Soc. Dent. Mater., 26, 269 (1999)
  6. T. Hanawa, H. Ukai, K. Murakami, J. Electron Spectrosc., 63, 347 (1993) https://doi.org/10.1016/0368-2048(93)80032-H
  7. T. Hanawa, H. Ukai, K. Murakami, K. Asaoka, Mater. Trans. JIM., 36, 438 (1995) https://doi.org/10.2320/matertrans1989.36.438
  8. P. Ducheyne, W. Van Raemdonck, J. C. Heughebaert, M. Heughebaert, Biomaterials, 7, 97 (1986) https://doi.org/10.1016/0142-9612(86)90063-3
  9. S. Ban, S. Maruno, A. Harada, M. Hattori, K. Narita, J. Hasegawa, Dent. Mater. J., 15, 31 (1996) https://doi.org/10.4012/dmj.15.31
  10. H. Ishizawa and M. Ogino, J. Biomed. Mater. Res., 29, 1071 (1995) https://doi.org/10.1002/jbm.820290907
  11. O. S. Kweon, D. H. Won, M. H. Lee, T. S. Bae and O. Y. Lee, Biomaterials Research, 8, 20 (2004)
  12. O. S. Kweon, S. K. Choi, J. W. Moon, M. H. Lee, T. S. Bae and O. Y. Lee, Korean J. Mater. Res., 14, 607 (2004) https://doi.org/10.3740/MRSK.2004.14.9.607
  13. T. Hirata, T. Nakamura, F. Takashima, T. Maruyama, M. Taira and J. Takahashi, J. Oral. Rehab., 28, 773 (2001) https://doi.org/10.1046/j.1365-2842.2001.00737.x
  14. A. Kuroiwa and Y. Igarashi, J. Jpn. Prosthodont Soc., 42, 547 (1998) https://doi.org/10.2186/jjps.42.547
  15. R. C. Browne, Br. J. Ind. Med., 12, 57 (1955)
  16. S. G. Sjoberg, Acta. Med. Scand., 154, 381 (1956) https://doi.org/10.1111/j.0954-6820.1956.tb14333.x
  17. Z. Cai, T. Shafer, I. Watanabe, M. E. Nunn and T. Okabe, Biomaterials, 24, 213 (2003) https://doi.org/10.1016/S0142-9612(02)00293-4
  18. D. Iijima, T. Toneyama, H. Doi, H. Hamanaka and N. Kurosaki, Biomaterials, 24, 1519 (2003) https://doi.org/10.1016/S0142-9612(02)00533-1
  19. M. Long and H. J. Rack, Boimaterials, 19, 1621 (1998) https://doi.org/10.1016/S0142-9612(97)00146-4
  20. M. Niinami, Mater. Sci. Eng., A243, 231 (1998) https://doi.org/10.1016/S0921-5093(97)00806-X
  21. D. Buser, R. K. Schenk, S. Steinemann, J. P. Fiorellini, C. H. Fox and H. Stich, J. Biomed. Mater. Res., 25, 889 (1991) https://doi.org/10.1002/jbm.820250708
  22. C. Larsson, P. Thomsen, BO. Aronssen, M. Rodahl, J. Lausmaa, B. Kasemo and LE. Ericson, Biomaterials, 17, 605 (1996) https://doi.org/10.1016/0142-9612(96)88711-4
  23. L. Mattsson and U. Rolander, Gothenburg Institute of Physics Report, No GIPR-264, Goteburg, Sweden (1985)
  24. P. J. Li, C. Ohtsuki, T. Kokubo, K. Nakanishi, N. Soga and K. de Groot, J. Biomed. Mater. Res., 28, 7 (1994) https://doi.org/10.1002/jbm.820280103
  25. B. C. Yang, J. Weng, X. D. Li and X. D. Zhang, J. Biomed. Mater. Res., 47, 213 (1999) https://doi.org/10.1002/(SICI)1097-4636(199911)47:2<213::AID-JBM11>3.0.CO;2-C
  26. H. Takadama, H. M. Kim, T. Kokubo and T. Nakamura, J. Biomed. Mater. Res., 55, 185 (2001) https://doi.org/10.1002/1097-4636(200105)55:2<185::AID-JBM1005>3.0.CO;2-P
  27. H. Takadama, H. M. Kim, T. Kokubo and T. Nakamura, J. Biomed. Mater. Res., 57, 441 (2001) https://doi.org/10.1002/1097-4636(20011205)57:3<441::AID-JBM1187>3.0.CO;2-B