DOI QR코드

DOI QR Code

Growth and Effect of Thermal Annealing for CuInse2 Single Crystal Thin Film by Hot Wall Epitaxy

Hot Wall Epitaxy (HWE)법에 의한 CuInse2 단결정 박막 성장과 열처리 효과

  • Published : 2004.11.01

Abstract

A stoichiometric mixture of evaporating materials for $CuInse_2$ single crystal thin films was prepared from horizontal electric furnace. To obtain the single crystal thin films, $CuInse_2$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the hot wall epitaxy (HWE) system. The source and substrate temperatures were $620^{\circ}C\;and\;410^{\circ}C$, respectively. The temperature dependence of the energy band gap of the $CuInse_2$ obtained from the absorption spectra was well described by the Varshni's relation, $E_{g}(T)=1.1851 eV - (8.99{\times}10^{-4} eV/K)T^2/(T+153 K)$. After the aa-grown $CuInse_2$ single crystal thin films was annealed in Cu-, Se-, and In-atmospheres, the origin of point defects of $CuInse_2$ single crystal thin films has been investigated by the photoluminescence(PL) at 10 K. The native defects of $V_{cu},\;V_{Se},\;Cu_{int},\;and\;Se_{int}$ obtained by PL measurements were classified as a donors or accepters type. And we concluded that the heat-treatment in the Cu-atmosphere converted $CuInse_2$ single crystal thin films to an optical n-type. Also, we confirmed that In in $CuInse_2$/GaAs did not form the native defects because In in $CuInse_2$ single crystal thin films existed in the form of stable bonds.

Keywords

References

  1. Richard K. Ahrenkiel and T. R. Massopust, Appl. Phys. Lett., 43(7), 658 (1983) https://doi.org/10.1063/1.94474
  2. Sigurd Wagner, J. L. Shay and P. Migliorat, Applied Physics Letters, 25(8), 434 (1974) https://doi.org/10.1063/1.1655537
  3. P. Migliorato and J. L. Shay, J. Appl. Phys., 146(4), 1777 (1975) https://doi.org/10.1063/1.321782
  4. C. Rincon and G. Sanchez, Crystal Research Technology, 16(19S1), 1369 (1983)
  5. D. Haneman and J. Szot, Appl. Phys. Lett., 46(8), 778 (1985) https://doi.org/10.1063/1.95907
  6. V. Riede, H. Neumann and Xuan Nguyen, 28, 449 (1978) https://doi.org/10.1016/0038-1098(78)90836-0
  7. I. Shih, C. H. Champness and A. Vahid Shahihi, Solar cells, 16, 27 (1984) https://doi.org/10.1016/0379-6787(86)90073-6
  8. David cahen, P. J. Ireland, L. L. Kazmerski and F. A. Thiel, J. Appl. Phys., 57(2), 4761 (1985) https://doi.org/10.1063/1.335341
  9. K. J. Hong and T. S. Jeong, Journal of Crystal Growth, 218, 19 (2000) https://doi.org/10.1016/S0022-0248(00)00491-7
  10. W. Horig and H. Sobotta, Journal of Crystal Growth, 48, 67 (1978)
  11. K. J. Hong and T. S. Jeong, Journal of Crystal Growth, 172, 89 (1997) https://doi.org/10.1016/S0022-0248(96)00725-7
  12. B. D. Cullity, 'Elements of X-ray Diffractions' Caddson-Wesley, chap 11 (1985)
  13. J. Parkes and M. J. Hampshire, J. Appl. cryst. 6, 414 (1973) https://doi.org/10.1107/S0021889873009027
  14. Elizabeth A. wood, Crystal Orientation manual, Columbia university press (1963)
  15. H. Fujita, J. Phys. Soc., Jpn., 20, 109 (1965) https://doi.org/10.1143/JPSJ.20.109
  16. Y. P. Varshni, Physica, 34, 149 (1967) https://doi.org/10.1016/0031-8914(67)90062-6
  17. Boy D, G. D., Kasper, H. M. and McFee, J. H, IEEE, J. Quantum Electro QE7, 563 (1971) https://doi.org/10.1109/JQE.1971.1076588
  18. Shay, J. L. and Wernick, J. H., Ternary chalcopyrite semiconductor : electronic properties, and applications, pergamon, chap. 4(1975)
  19. H. C. Casey, Jr. and R. H. Kaiser, J. Electrochem. Soc. 114, 149 (1967) https://doi.org/10.1149/1.2426527
  20. S. Bendapudi and D. N. Bose, Appl. Phays. Lett. 42, 287 (1983) https://doi.org/10.1063/1.93882
  21. D. M. Eagles, J. Phys. Chem. Solids, 16, 76 (1960) https://doi.org/10.1016/0022-3697(60)90075-5