DOI QR코드

DOI QR Code

Hot Corrosion Behavior of Superalloys in Lithium Molten Salt under Oxidation Atmosphere

리튬용융염계 산화성분위기에서 초합금의 고온 부식거동

  • Published : 2004.11.01

Abstract

The electrolytic reduction of spent oxide fuel involves the liberation of oxygen in a molten LiCl electrolyte, which is a chemically aggressive environment that is very corrosive for typical structural materials. So, it is essential to choose the optimum material for the process equipment handling molten salt. In this study, corrosion behavior of Haynes 263, 75, and Inconel X-750, 718 in molten salt of $LiCl-Li_{2}O$ under oxidation atmosphere was investigated at $650^{\circ}C\;for\;72\sim360$ hours. At $3\;wt\%\;of\;Li_{2}O$, Haynes 263 alloy showed the highest corrosion resistance among the examined alloys, and up to $8\;wt\%\;of\;Li_{2}O$, Haynes 75 exhibited the highest corrosion resistance. Corrosion products were formed $Li(Ni,Co)O_2,\;LiNiO_2\;and\;LiTiO_2\;and\;Cr_{2}O_3$ on Haynes 263, $Cr_{2}O_3,\;NiFe_{2}O_4,\;LiNiO_2,\;Li_{2}NiFe_{2}O_4,\;Li_{2}Ni_{8}O_10$ and Ni on Haynes 75, $Cr_{2}O_3,\;(Al,Nb,Ti)O_2,\;NiFe_{2}O_4,\;and\;Li_{2}NiFe_{2}O_4$ on Inconel X-750 and $Cr_{2}O_3,\;NiFe_{2}O_4\;and\;CrNbO_4$ on Inconel 718, respectively. Haynes 263 showed local corrosion behavior and Haynes 75, Inconel X-750, 718 showed uniform corrosion behavior.

Keywords

References

  1. F. J. Kohl, G. J. Santoro, C. A. Steams, G. C. Fryburg and D. E. Rosner, J. Electrochem. Soc., 126, 1054 (1979) https://doi.org/10.1149/1.2129173
  2. S. Kameswari, Oxid. met., 26, 33 (1973) https://doi.org/10.1007/BF00664272
  3. A. Rahmel and H. J. Engell, Corrosion, 18, 320 (1969)
  4. M. Spiegel, P. Biedenkipf and H. J. Grabke, Corros. Sci., 39, 1193 (1997) https://doi.org/10.1016/S0010-938X(97)00020-6
  5. S. Mitsushima, N. Kamiya and K. I. Ota, J. Electrochem. Soc., 137, 2713 (1990) https://doi.org/10.1149/1.2087031
  6. M. M. Kochergin and G. I. Stolyarava, J. Appl. Chem. USSR, 29, 789 (1956)
  7. H. R. Copson, J. Electrochem. Soc., 100, 257 (1953) https://doi.org/10.1149/1.2781115
  8. F. Colom and A. Bodalo, Corros. Sci., 12, 73 (1972) https://doi.org/10.1016/S0010-938X(72)91224-3
  9. W. H. Smyrl and M. J. Blanckburn, Corrosion, 31, 370 (1972)
  10. C. B. Gill, M. E. Staumanis and W. E. Schlechten, J. Electrochem. Soc., 102, 42 (1955) https://doi.org/10.1149/1.2429987
  11. J. A. Geobel, F. S. Pettit and G. W. Goward, Met. Trans., 4, 261 (1973) https://doi.org/10.1007/BF02649626
  12. E. T. Turkdogan, Physical Chemistry of High Temperature Technology, Academic Press, New York (1980)
  13. G. C. Allen and R. K. Wild, J. Electron. Spectroscopy, 5, 409 (1974) https://doi.org/10.1016/0368-2048(74)85027-9
  14. S. Ling, T. A. Rahmel and R. Petkovic-Luton, Oxid. Met., 40, 180 (1993) https://doi.org/10.1007/BF00665264
  15. F. H. Stott and F. I. Wei, Mater. Sci. Tech., 5, 1140 (1989) https://doi.org/10.1179/mst.1989.5.11.1140
  16. G. C. Wood, Corros. Sci., 2, 173 (1962) https://doi.org/10.1016/0010-938X(62)90019-7
  17. K. Bouhanek, D. Oquab and B. Pieraggi, Materials Science Forum, 251-254, 34 (1997)
  18. Y. H. Lee and Y. S. Ahn, J. Kor. Inst. Met. & Mater., 30, 1514 (1992)
  19. W. F. Smith, Structure and Properties of Engineering Alloys, 2nd, McGraw-Hill, p485, (1994)
  20. H. Fujikawa and J. Murayama, Tetsu-to-Hagane, 69, 678 ( 1983) https://doi.org/10.2355/tetsutohagane1955.69.6_678
  21. S. H. Park, Y. D. Lee and Y. Y. Lee, J. Kor. Inst. Met. & Mater., 33, 1323 (1995)
  22. D. Caplan and M. Cohen, Corrosion, 15, 141 (1959)
  23. H. H. Davis, H. C. Graham and I. A. Krernes, Oxid. Met., 3, 431 (1971) https://doi.org/10.1007/BF00604044
  24. T. H. Stott, G. C. Wood, Y. Shida, D. P. Whittle and B. D. Bastow, Corros. Sci., 21, 599 (1981) https://doi.org/10.1016/0010-938X(81)90011-1
  25. M. Skashita and N. Sato, Corros. Sci., 17, 473 (1977) https://doi.org/10.1016/0010-938X(77)90003-8
  26. C. R. Crayton and Y. C. Lu, Corros. Sci., 29, 7 (1989) https://doi.org/10.1016/0010-938X(89)90059-0