DOI QR코드

DOI QR Code

Effect of Mo and Nb on High Temperature Oxidation of TiAl Alloys

Mo, Nb첨가가 TiAl합금의 산화에 미치는 영향

  • Kim Jae-Woon (Center for Advanced Plasma Surface Technology, Sungkyunkwan University) ;
  • Lee Dong-Bok (Center for Advanced Plasma Surface Technology, Sungkyunkwan University)
  • 김재운 (성균관대학교 플라즈마 응용 표면기술 연구센터) ;
  • 이동복 (성균관대학교 플라즈마 응용 표면기술 연구센터)
  • Published : 2004.09.01

Abstract

Alloys of $Ti46\%Al-2\%Mo-2\%Nb$ were oxidized between 800 and $1000^{\circ}C$ in air, and their oxidation characteristics were studied. The alloys displayed good oxidation resistance due mainly to the beneficial effects of Mo and Nb. The oxide scales formed consisted primarily of an outer $TiO_2$ layer, an intermediate $Al_{2}O_3-rich$ layer, and an inner mixed layer of ($TiO_{2}+Al_{2}O_3$). Molybdenum and niobium dissolved in the scale effectively improved oxidation resistance. They were mainly distributed in the inner mixed layer of ($TiO_{2}+Al_{2}O_3$).

Keywords

References

  1. F. H. Froes and C. Suryanarayana, Physical Metallurgy and Processing of Intermetallic Compounds, p.297, Chapman & Hall, Inc., NY (1996)
  2. M. Maki, M. Shioda, M. Sayashi, T. Shimizu and S. Isobe, Mater. Sci. Eng., A153, 591 (1992) https://doi.org/10.1016/0921-5093(92)90256-Z
  3. M. Yoshihara and K. Miura, Intermetallics, 3, 357 (1995) https://doi.org/10.1016/0966-9795(95)94254-C
  4. B. G. Kim, G. M. Kim and C. J. Kim, Scripta Metall. Mater., 33, 1117 (1995) https://doi.org/10.1016/0956-716X(95)00327-R
  5. Y. Shida and H. Anada, Oxid. Met., 45, 197 (1996) https://doi.org/10.1007/BF01046826
  6. G. Welsch and A. I. Kahveci, Oxidation of High Temperature Intermetallics, p.207, TMS, Warrendale, PA (1989)
  7. I. C. I. Okafor and R. G. Reddy, J. Met., 51(6), 35 (1999)
  8. Y. Shida and H. Anada, Mater. Trans. JIM, 35, 623 (1994) https://doi.org/10.2320/matertrans1989.35.623
  9. J. Beddoes, T. Cheng, D. Y. Seo, H. Saari, L. Zhao and S. Durham, Processing and Fabrication of Advanced Materials IX, p.159, ASM, OH (2000)
  10. D. B. Lee, K. B. Park and M. Nakamura, Metals and Materials Int., 8, 319 (2002) https://doi.org/10.1007/BF03186102
  11. D. B. Lee, Y. D. Jang and M. Nakamura, Mater. Trans., 43, 2531 (2002) https://doi.org/10.2320/matertrans.43.2531
  12. D. B. Lee and Y. D. Jang, Mater. Sci. Forum, 449-452, 813 (2004) https://doi.org/10.4028/www.scientific.net/MSF.449-452.813
  13. D. B. Lee and S. W. Woo, Mater. Sci. Forum, 449-452, 817 (2004) https://doi.org/10.4028/www.scientific.net/MSF.449-452.817
  14. V. A. C. Haanappel, J. D. Sunderkotter and M. F. Stroosnijder, Intermetallics 7, 529 (1999) https://doi.org/10.1016/S0966-9795(98)00076-4
  15. G. Petzow and G. Effenberg, Ternary Alloys, vol.7 p.235, p.390, MSI VCH, (1993)
  16. J. M. Rakowski, F. S. Pettit, G. H. Meier, F. Dettenwanger, E. Schumann and M. Ruhle, Scripta Metall. Mater., 33, 997 (1995) https://doi.org/10.1016/0956-716X(95)00312-J
  17. T. A. Wallace, R. K. Clark and K. E. Wiedemann, Oxid. Met., 42, 451 (1994)
  18. S. Taniguchi, K. Uesaki, Y. C. Zhu, Y. Matusumoto and T. Shibata, Mater. Sci. Eng., A266, 267 (1999) https://doi.org/10.1016/S0921-5093(99)00042-8
  19. M. F. Stroosnijder, N. Zheng, W. J. Quadakkers, R. Hofman, A. Gil and F. Lanza, Oxid. Met., 46, 19 (1996) https://doi.org/10.1007/BF01046882
  20. S. Becker, M. Schutze and A. Rahmel, Oxid. Met., 39, 93 (1993) https://doi.org/10.1007/BF00666612
  21. A. Rahmel and P. J. Spencer, Oxid. Met., 35, 53 (1991) https://doi.org/10.1007/BF00666500
  22. P. Perez, J. A. Jimenez, G. Frommeyer and P. Adeva, Mater. Sci. Eng., A284, 138 (2000) https://doi.org/10.1016/S0921-5093(00)00755-3