DOI QR코드

DOI QR Code

Synthesis of Lithium Titanate Whisker Using Ion-Exchange of Acid Treatment

  • Um Myeong-Heon (Department of Advanced Materials Chemical Technology, Chonan National Technical College) ;
  • Lee Jin-Sik (R&D Cent, VITZROCELL Co., Ltd)
  • Published : 2004.09.01

Abstract

Lithium titanate whiske($Li_{x}Ti_{4}O_9$) was prepared by an ion-exchange reaction. To this end, the initial material, potassium tetratitanate ($K_{2}Ti_{4}O_9{\cdot}nH_{2}O$) was prepared by calcination of a mixture of $K_{2}CO_3\;and\;TiO_2$ with a molar ratio of 2.8 at $1050^{\circ}C$ for 3 h, followed by boiling water treatment of the calcined products for 10 h. Fibrous potassium tetratitanate could be transformed into layered hydrous titanium dioxide ($H_{2}Ti_{4}O_9{\cdot}nH_{2}O$) through an exchange of $K^{+}\;with\;H^{+}$ using 0.075 M HCl. Also, lithium titanate whisker was finally prepared as $Li^{+}\;and\;H^{+}$ ions were exchanged by adding 20 mL of a mixture solution of LiOH and $LiNO_3$ to 1g whisker and stirring for $5\~15$ days. The average length and diameter of the $Li_{x}Ti_{4}O_9$ whiskers were $10\~20{\mu}m\;and\;1\~3{\mu}m$, respectively.

Keywords

References

  1. M. M. Thackeray, W. I. F. David, P. G. Bruce, and J. B. Goodenough, Mater. Res. Bull., 13, 461 (1983) https://doi.org/10.1016/0025-5408(83)90138-1
  2. I. Faul and J. Knight, Chem. Ind., 24, 820 (1989)
  3. L. Guohur, K. Sakuma, H. Ikuta, T. Uchida, M. Wakihra, and G. Hetong, DENKI KAGAK 64, 202 (1996)
  4. M. M. Thackeray, W. I. F. David, P. G. Bruce and J. B. Goodenough, Mat. Res. Bull., 18, 461 (1983) https://doi.org/10.1016/0025-5408(83)90138-1
  5. J. C. Hunter, J. Solid State Chem., 39, 142 (1981) https://doi.org/10.1016/0022-4596(81)90323-6
  6. N. Kumagai, S. Tanifuji and K. Tanno, J. Power Sources, 35, 313 (1991) https://doi.org/10.1016/0378-7753(91)80115-E
  7. N. Kumagai, T. Fujiwara and K. Tanno, J. Power Sources, 43, 635 (1993) https://doi.org/10.1016/0378-7753(93)80213-9
  8. K. M. Colbow, J. R. Dahn, and R. R. Haering, J. Power Sources, 26, 397 (1989) https://doi.org/10.1016/0378-7753(89)80152-1
  9. T. Ohzuku, A. Ueda, and N. Yamamoto, J. Electrochem. Soc., 142, 1431 (1995) https://doi.org/10.1149/1.2048592
  10. T. Sasaki, Y. Komatsu, and Y. Fujiki, Mat. Res. Bull., 22, 1321 (1987) https://doi.org/10.1016/0025-5408(87)90295-9
  11. T. Shimizu, H. Yanagida and K. hashimoto, Yogyo-Kyokai-shi, Japan, 85, 567 (1978)
  12. T. Shimizu, H. Yanagida, M. Hori, K. hashimoto and Y. Nishikawa, Yogyo-Kyokai-shi, Japan, 87, 565 (1979) https://doi.org/10.2109/jcersj1950.87.1011_565
  13. T. Shimizu, H. Yanagida, M. Hori and K. hashimoto, Yogyo-Kyokai-shi, Japan, 86, 430 (1977)
  14. Y. Fujiki and N. Ohta, Yogyo-Kyokai-shi, Japan, 88, 111 (1980) https://doi.org/10.2109/jcersj1950.88.1015_111
  15. T. Shimizu, H. Yanagida, K. hashimoto and Y. Nishikawa, Yogyo-Kyokai-shi, Japan, 88, 85 (1980)
  16. T. Sasaki. M. Watanabe and Y.Fujiki, Inorg. Chem., 24, 2265 (1985) https://doi.org/10.1021/ic00208a028
  17. C. T. Lee, M. H. Um, and H. Kumazawa, J. Am. Ceram. Soc., 83, 1098 (2000) https://doi.org/10.1111/j.1151-2916.2000.tb01337.x
  18. R. Marchand, L. Brohan and M. Tournoux, Mat. Res. Bull., 15, 1129 (1980) https://doi.org/10.1016/0025-5408(80)90076-8
  19. R. Marchand, L. Brohan, R. M'Bedi and M. Tournoux, Rev. de Chim. Miner., 21, 476 (1984)
  20. T. Sasaki and Y. Fujiki, J. Solid State Chem., 83, 45 (1989) https://doi.org/10.1016/0022-4596(89)90052-2
  21. T. Sasaki. M. Watanabe and Y.Fujiki, Inorg. Chem., 24, 2265 (1985) https://doi.org/10.1021/ic00208a028