DOI QR코드

DOI QR Code

Fabrication of Triode Type Field Emission Device Using Carbon Nanotubes Synthesized by Thermal Chemical Vapor Deposition

열 화학 기상 증착법을 이용한 삼극관 구조의 탄소 나노 튜브 전계 방출 소자의 제조

  • Yu W. J. (Department of Materials Science and Engineering, Chungnam National University) ;
  • Cho Y. S. (Department of Materials Science and Engineering, Chungnam National University) ;
  • Choi G. S. (Department of Materials Science and Engineering, Chungnam National University) ;
  • Kim D. J. (Department of Materials Science and Engineering, Chungnam National University)
  • 유완준 (충남대학교 공과대학 재료공학과 나노 재료 응용 실험실) ;
  • 조유석 (충남대학교 공과대학 재료공학과 나노 재료 응용 실험실) ;
  • 최규석 (충남대학교 공과대학 재료공학과 나노 재료 응용 실험실) ;
  • 김도진 (충남대학교 공과대학 재료공학과 나노 재료 응용 실험실)
  • Published : 2004.08.01

Abstract

We report a new fabrication process for high performance triode type CNT field emitters and their superior electrical properties. The CNT-based triode-type field emitter structure was fabricated by the conventional semiconductor processes. The keys of the fabrication process are spin-on-glass coating and trim-and-leveling of the carbon nanotubes grown in trench structures by employing a chemical mechanical polishing process. They lead to strong adhesion and a uniform distance from the carbon nanotube tips to the electrode. The measured emission property of the arrays showed a remarkably uniform and high current density. The gate leakage current could be remarkably reduced by coating of thin $SiO_{2}$ insulating layer over the gate metal. The field enhancement factor(${\beta}$) and emission area(${\alpha}$) were calculated from the F-N plot. This process can be applicable to fabrication of high power CNT vacuum transistors with good electrical performance.

Keywords

References

  1. W. A. de Heer, A. Chatelain and D. Ugarte, Science, 270, 1179 (1995) https://doi.org/10.1126/science.270.5239.1179
  2. D. S. Chung, S. H. Park and Y. W. Jin, IEEE. 179 (2001)
  3. W. Zhu, C. Bower, O. Zhou, G. Kochanski and S. Jin, Appl. Phys. Lett., 75, 873 (1999) https://doi.org/10.1063/1.124541
  4. Y. W. Jin, J. E. Jung, Y. J. Park, J. H. Choi, D. S. Jung, H. W. Lee, S. H. Park, N. S. Lee, J. M. Kim, T. Y. Ko, S. J. Lee, S. Y. Hwang, J. H. You, J. B. Yoo and C. Y. Park, J. Appl. Phys., 92, 1065 (2002) https://doi.org/10.1063/1.1489067
  5. F. Ito, Y. Tomihari, Y. Okada, K. Konuma and A. Okamoto, IEEE., 22, 426 (2001)
  6. J. M. Kim, W. B. Choi, N. S. Lee and J. E. Jung, Diam. Relat. Mat., 9, 1184 (1999) https://doi.org/10.1016/S0925-9635(99)00266-6
  7. C. Bower, D. Shalom, W. Zhu, D. Lopez, G. Kochanski, P. Gammel and S. H. Jin, IEEE., 49, 1478 (2002)
  8. Y. H. Lee, Y. T. Jang, D. H. Kim, J. H. Ahn and B. K. Ju, Adv. Mater., 13, 479 (2001) https://doi.org/10.1002/1521-4095(200104)13:7<479::AID-ADMA479>3.0.CO;2-H
  9. Y. T. Jang, C. H. Choi, B. K. Ju, J. H. Ahn and Y. H. Lee, Physica B, 334, 9 (2003) https://doi.org/10.1016/S0921-4526(02)02668-6
  10. G. S. Choi, Y. S. Cho, S. Y. Hong, J. B. Park, K. H. Son and D. J. Kim, J. Appl. Phys., 91, 3847 (2002) https://doi.org/10.1063/1.1448877
  11. K. S. Choi, Y. S. Cho, S. Y. Hong, J. B. Park and D. J. Kim, J. European Ceramics Society, 21, 2095 (2001) https://doi.org/10.1016/S0955-2219(01)00179-0
  12. W. J. Yu, Y. S. Cho, G.. S. Choi, D. J. Kim, H. J. Kim and S. G. Yoon, Kor. J. Mat. Res., 13(5), 333 (2003) https://doi.org/10.3740/MRSK.2003.13.5.333
  13. J. B. Park, Y. S. Cho, S. Y. Hong, K. S. Choi, D. J. Kim, S. Y. Choi, S. D. Ahn, Y. H. Song, J. H. Lee and K. I. Cho, Thin Solid Films, 415, 78 (2002) https://doi.org/10.1016/S0040-6090(02)00507-2
  14. G. C. Kokkorakis, A. Modinos and J. P. Xanthakis, J. Appl. Phys., 91, 4580 (2002) https://doi.org/10.1063/1.1448403
  15. Y. Saito, K. Jamaguchi, R. Mizushima, S. Uemura, T. Nagasako, J. Yotani and T. Shimojo, Appl. Surf. Science, 146, 305 (1999) https://doi.org/10.1016/S0169-4332(99)00059-8
  16. S. Y. Choi, Y. I. Kang, K. I. Cho, G. S. Choi and D. J. Kim, J. Korean Phys. Soc., 39, S193(2001)
  17. R. H. Fowler and L. W. Nordheim, Proc. R. Soc. London Ser., A119, 173 (1928) https://doi.org/10.1098/rspa.1928.0091
  18. D. Temple, Mater. Sci. Eng. R24, 185 (1999) https://doi.org/10.1016/S0927-796X(98)00014-X
  19. H. H. Busta, J. E. Pogemiller and B. J. Zimmerman, IEEE Trans. Elecyron Devices, 40, 1530 (1993) https://doi.org/10.1109/16.223715
  20. M. Hirakawa, S. Sonoda, C. Tanaka, H. Murakami and H. Yamakawa, Appl. Surf. Science, 167, 662 (2001) https://doi.org/10.1016/S0169-4332(00)00808-4